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ABSTRACT

In this paper we demonstrate how to improve the performance of
deep neural network (DNN) acoustic models using multi-task learn-
ing. In multi-task learning, the network is trained to perform both
the primary classification task and one or more secondary tasks us-
ing a shared representation. The additional model parameters asso-
ciated with the secondary tasks represent a very small increase in the
number of trained parameters, and can be discarded at runtime. In
this paper, we explore three natural choices for the secondary task:
the phone label, the phone context, and the state context. We demon-
strate that, even on a strong baseline, multi-task learning can provide
a significant decrease in error rate. Using phone context, the pho-
netic error rate (PER) on TIMIT is reduced from 21.63% to 20.25%
on the core test set, and surpassing the best performance in the liter-
ature for a DNN that uses a standard feed-forward network architec-
ture.

Index Terms— Acoustic model, speech recognition, multi-task
learning, deep neural network, TIMIT

1. INTRODUCTION

Recently, significant improvements in speech recognition accuracy
has been obtained on a variety of tasks using hidden markov model
(HMM) acoustic models based on a deep neural network (DNN)
rather than the Gaussian mixture model (GMM) [1, 2, 3]. A DNN
is essentially simply artificial neural network with many hidden lay-
ers between the inputs and outputs. In the context of DNN-HMM
acoustic modeling, the network’s task is to compute likelihoods that
can be used for the emission probabilities of the HMM.

Whereas a conventional GMM acoustic model uses separate
Gaussian mixtures for each acoustic model state, the DNN jointly
estimates the posterior probabilities of each acoustic state using a
single neural network. One of the benefits of using a neural network
aocustic model is this shared representation for all acoustic classes.

When learning the parameters of an acoustic model, the goal
is to have a high recognition accuracy on a set of test data that is
not included in the training data set. As a proxy, we try in increase
recognition accuracy on the training data, and hope that this also
improves the same metric on the test data. When the performance
on the test data is much worse than the performance on the training
data, we say the model did not generalize well. To the extent that
many different models may get the same performance on the training
data, we should prefer the one that generalizes best.

Multi-task learning (MTL) has been proposed as a method of im-
proving the generalization of a classifier by forcing it to learn more
than one related task at a time [4]. When the classifier uses the same

network to perform more than one related task, it learns the shared
structure of the tasks. If the tasks are chosen appropriately, what is
learned for one task can help the other tasks learn better.

Using MTL is an appealing approach to improving the general-
ization capability of a neural network as it does not introduce any
additional decoding complexity at runtime compared to a standard
single task network. The additional parameters in the network asso-
ciated with the secondary tasks are used only to aid in the training of
the network, and in particular, the shared parameters that are com-
mon to all tasks in the network. After training is complete, the por-
tion of the network associated with the secondary tasks is discarded
and the classification is performed identically to a conventional sin-
gle task classifier.

Multi-task learning using neural networks has been previously
applied to various speech and language related tasks. For example,
MTL was used for noise robust speech recognition for an isolated
digits task, where the network was trained to predict both the digit
label and the clean speech feature vector given the observed noisy
feature vector as input [5]. This work was further developed in [6]
which added gender prediction as a third task and used a recurrent
neural network. Multi-task learning has also been used in spoken
language understanding [7, 8] and natural language processing [9].

In this work, we apply multi-task learning to the task of continu-
ous phoneme recognition. Phoneme recognition using a DNN-HMM
is typically performed using a network trained to predict context-
independent phonetic states. We propose to augment this primary
task with one of three candidate secondary tasks. In the first system,
prediction of the phoneme identity is used as the secondary task.
This enables acoustic states to learn which acoustic states may be
similar via their shared common source phone. The second system
uses the previous and subsequent acoustic states as secondary tasks,
which informs the network about the temporal evolution of the la-
bels. Finally, the third proposed system uses the prediction of left
and right phonetic context as the secondary tasks. This enables the
network to learn about context dependency during training, while
still using simple context-independent acoustic model in decoding.

Because we are use the resulting DNN in an HMM recognition
system, we refer to our proposed model as the MTL-DNN-HMM.
We evaluate the performance of these three candidate tasks for multi-
task learning through a series of phoneme recognition experiments
using TIMIT. We show that our MTL-DNN-HMM acoustic model
outperforms the previously best published feedfoward DNN-HMM
system.

The rest of the paper is as follows. In Section 2, we review deep
neural networks and how they can be used in an HMM-based speech
recognizer. Multi-task learning is introduced in Section 3, and the
three proposed secondary tasks are described in detail. The perfor-
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mance of multi-task learning for phoneme recognition is evaluated
in Section 4. Finally, we summarize our findings in Section 5.

2. DEEP NEURAL NETWORKS

A deep neural network (DNN) is simply a multi-layer perceptron
(MLP) with many hidden layers between its inputs and outputs. In
this section, we review the main ideas behind the MLP and show
how it can be used as an acoustic model for speech recognition.

2.1. Multi-Layer Perceptrons

In this work a MLP is used to classify an acoustic observation x into
an acoustic model state s. The MLP can be interpreted as a stack
of log-linear models. Each hidden layer models the posterior prob-
abilities of a set of binary hidden variables h given the input visible
variables v, while the output layer models the class posterior proba-
bilities. Thus, in each of the hidden layers, the posterior distribution
can be expressed as

p(hl|vl) =

Nl∏
j=1

p(hl,j |vl), 0 ≤ l < L (1)

where

p(hl,j |vl) =
1

1 + e(−zl,j(vl))
, zl,j = wT

l,jvl + bl,j (2)

Each observation is propagated forward through the network, start-
ing with the lowest layer (v0 = x) . The output variables of each
layer become the input variables of the next, i.e. vl+1 = hl. In
the final layer, the class posterior probabilities are computed using a
soft-max layer, defined as

p(s|x) = p(s|vL) =
e(zL,s(vL))∑
s′ e

(zL,s′ (vL))
(3)

Note that the equality between p(s|vL) and p(s|x) is valid by mak-
ing a mean-field approximation [10].

In this work, networks are trained by maximizing the log pos-
terior probability over the training examples, which is equivalent to
minimizing the cross-entropy.

L =
∑
t

log p(st|xt) (4)

The objective function is maximized using error back propagation
which performs an gradient-based update

(wl,j , bl,j)← (wl,j , bl,j) + η
∂L

∂(wl,j , bl,j)
, ∀ j, l (5)

where η is the learning rate.

2.2. Pre-training DNNs

The gradient-based optimization in (5) can result in a poor local
optimum, especially as the number of layers increases. To rem-
edy this, pre-training methods have been proposed to initialize the
parameters prior to back propagation. In some sense, this is sim-
ilar to the manner in which maximum likelihood acoustic models
are used as the initialization for discriminative training in traditional
GMM-HMM acoustic models. The most well-known method of pre-
training grows the network layer by layer in an unsupervised manner.

This is done by treating each pair of layers in the network as a re-
stricted Boltzmann machine (RBM) that can be trained using an ob-
jective criterion called contrastive divergence. Practical details about
the pre-training algorithm can be found in [11].

2.3. Using the DNN as an acoustic model

The speech recognition system takes as input a sequence of frames
representing the acoustic input signal X = {x1, . . . ,xT }, and de-
termines the most likely sequence of symbolsW = {w1, . . . ,wN},
typically words or phones, that correspond to that signal.

Ŵ = argmaxWp(X ,W)

Inside the acoustic model, a set of hidden markov models de-
scribe the joint probability of the symbol sequenceW and state se-
quences S = {s1, . . . , sT .}. In Viterbi decoding, the probability of
any sequenceW is found as the maximum over all acoustic state se-
quences S that could have produced it. Additionally, the probability
of the acoustic sequence is independent of the word sequence given
the state sequence.

p(W,X ) ≈ max
S

p(W,S)p(X|S)

The acoustic likelihood calculation we are interested in is embedded
in p(X|S). Because S and X have the same length, we can write

p(X|S) =
T∏

t=1

px|s(xt|st)

The value p(xt|st) represents the likelihood of the acoustic obser-
vation at frame t for the given state of the acoustic model. Until
recently, it was common to model and calculate it using a Gaussian
mixture model (GMM). To perform speech recognition using a DNN
acoustic model, the state emission likelihoods are instead computed
from the posterior probabilities ps|x(st|xt) generated by the DNN
[12]. This can be done using Bayes’ rule to reverse the conditioning.

px|s(xt|st) =
ps|x(st|xt)px(xt)

ps(st)

Because the probability px(x) is constant, it is irrelevant to the
recognition process and can be safely ignored. The distribution
over state labels ps(s) is estimated by counting frame labels in the
training data.

In this work, the network is trained to predict context-indpendent
states. The training data is labeled by Viterbi alignment of the ob-
servations to the acoustic states of a GMM-HMM system.

3. MULTI-TASK LEARNING

Multi-task learning [4] is a technique wherein a primary learning
task is solved jointly with additional related tasks using a shared
input representation. If these secondary tasks are chosen well, the
shared structure serves to improve generalization of the model, and
its accuracy on an unseen test set. When testing on unseen data, the
secondary tasks can be safely ignored.

As discussed previously, the primary task for the DNN in this
work is predicting the acoustic state given the observation. This is
done by training the network using the objective function shown in
(4).

6966



When trained on the primary task only, the model is not told
which states may be similar because they belong to the same pho-
netic label, how context may affect the acoustic realization, or how
this classificaion fits as part of a HMM’s trajectory through its state
space. Because it predicts one acoustic state in isolation, it needs to
learn these structures blindly from data.

In multi-task learning, the key aspect is choosing appropriate
secondary tasks for the network to learn. When choosing secondary
tasks for multi task learning, one should select a task that is related
to the primary task, but gives more information about the structure
of the problem.

3.1. Phone Label Task

The phone label task is designed to give the combined system hints
about which acoustic states may be similar, because they share the
same phone label. To create the phone label for each training exam-
ple, the acoustic state symbol st is mapped down to its corresponding
phone label wt.

A secondary output layer is created. Like the primary output
layer, it is fed by the final layer of hidden units from the DNN. It’s
contribution to the objective function is

Fphone =
∑
t

ln pw(wt|xt).

3.2. State Context Task

The state context task uses the next and previous frame’s acoustic
state labels as the secondary learning tasks. This gives the model in-
formation about the time-evolution of the acoustic state that is miss-
ing from the primary task.

The secondary objective function measures the ability of the
model to predict the current acoustic model state st as well as the
previous and next acoustic model states, st−1 and st+1, from the
current acoustic observation xt. This is possible because in our sys-
tem xt is derived from multiple frames of acoustic data centered on
frame t.

Fscontext =
∑
t

ln psL(st−1|xt)psR(st+1|xt)

For the initial frame of every utterance, the previous acoustic model
state is set to the initial silence state. The last frame of every utter-
ance uses the final silence state as its next acoustic model state.

3.3. Phone Context Task

The phone context task is motivated by the past success of triphone
based acoustic modeling. Although this context information is often
useful in acoustic modeling, it is absent from the primary task.

The phone context task consists uses the left and right context
phone labels as the secondary learning tasks. In this system, two
output layers are added to the baseline system. All three output lay-
ers are connected to the same final layer of hidden units from the
DNN.

The secondary objective funcion measures how well the the left
and right phone labels l and r are predicted by the combined model.

Fpcontext =
∑
t

ln pl(lt|xt)pr(rt|xt)

For every frame of training data, the left context phone and right
context phone are found in the same way as a standard triphone-
based acoustic model. The left context of the initial frame, and the
right context of the final frame, are forced to be the silence phone.

4. EXPERIMENTS

Experiments were conducted on the TIMIT corpus [13]. This corpus
contains continuous speech from 630 native English speakers, orga-
nized into eight dialects, with eight usable recorded utterances for
each speaker. The core test set consists of twenty-four speakers, two
males and one female from each of the eight dialect regions. The
training set consists of the 462 speakers who do not speak any of the
utterances contained in the core test set.

Recognition was performed using a set of 61 phoneme labels,
with three possible states each, for a total of 183 possible acoustic
states. The likelihood produced by the primary task was used as the
emission probability of a HMM phonetic recognizer, and the likeli-
hoods produced by the secondary tasks were discarded. The HMMs
each had three states, enforced a strict left to right state ordering, and
were combined with a standard bigram phonetic language model.
After decoding, the 61 phone labels were collapsed into a set of 39
phone classes for scoring, following the example of [14].

4.1. Baseline DNN-HMM

A DNN for the baseline DNN-HMM system was trained with four
hidden layers with 2048 hidden units in each layer. The input layer
consisted of a context window of eleven frames of acoustic data
formed from the target frame at time t and five previous and sub-
sequent frames. Each frame was represented by 40 log mel filter-
bank coefficients plus their first and second order derivatives. Each
feature vector was augmented with the energy of each frame and its
derivatives. This resulted in each frame being represented by a 123-
dimensional vector and an input layer that consisted of 1353 com-
ponents. The output layer of the baseline system is a softmax layer,
with one output for each of the 183 acoustic states. The supervised
data for each frame is a one-hot encoding. The labels for the training
data were determined by a Viterbi alignment of the training data to a
baseline GMM-HMM recognizer.

The DNN was initialized using layer-by-layer unsupervised pre-
training, and then discriminatively trained using twenty-five epochs
of back propagation. A learning rate of 0.08 for the first 9 epochs
and 0.002 for the remaining 16 epochs, with a momentum of 0.9.
Back propagation was done using stochastic gradient descent in
minibatches of 512 training examples. This DNN system produced
a phone error rate (PER) of 19.43% on the dev set and 21.63% on
the core test set. We believe this to be a strong baseline system with
equivalent performance to the DNN system reported in [1], on the
same task and using the same features and network architecture.

4.2. Multi-task learning DNN-HMMs

A series of experiments was performed to examine the performance
of the proposed multi-task learning approaches. All experiments
used the same network architecture as the baseline system with the
exception of the output layer. In these experiments, the soft-max
layer for the primary task of context-independent phonetic state clas-
sification was augmented with a secondary soft-max layer for the
auxiliary tasks. In all experiments, the pre-trained network from the
baseline system was used as the initialization for back propagation.
We again performed twenty-five iterations of back propagation as
in the baseline single task network. The same learning schedule was
used but the learning rates were normalized across the different MTL
experiments to account for the fact that the output layer changes in
size depending on the number of secondary tasks.

6967



0 0.2 0.4 0.6 0.8 1

19

19.5

20

20.5

21
W

or
d 

E
rr

or
 R

at
e 

[%
]

Regularization Weight

 

 

Development
Core Test

Fig. 1. Phone error rate on the dev and test sets as a function of
the task weight α for multi-task learning using left and right context
prediction as the secondary task.

Of course, adding an additional task increases the number of
parameters in the output layer. However, because we are using a
multi-task learning framework, these additional parameters are not
used for classification by the primary task but rather serve to aid the
training of the parameters of the network shared by both tasks. Once
the network is trained, the output predictions for the secondary task
are discarded and the posterior probabilities for the primary task are
used in decoding exactly as in the baseline system.

The first multi-task learning system augments the primary task
of context-independent phonetic state classification with a secondary
task to predict the context-independent phone itself. This results in
an additional soft-max layer that classifies the input into one of 61
phones. This increases the size of the output layer by 25%

The second multi-task learning system adds the prediction of the
left and right phonetic context to the primary task. This results in a
DNN that makes three predictions at its output, context-independent
phone state, left phonetic context and right phonetic context, with
class dimensionality of 183, 61, and 61, respectively.

The third multi-task learning system predicts left and right pho-
netic state labels in addition to the primary task. In this case, the
dimensionality of each of the three tasks is 183.

4.3. Secondary Task Weight

In these experiments, the DNN was trained to maximize the follow-
ing multi-task objective function

LMTL = L+ αLaux (6)

whereLaux was one of the three secondary tasks described in Section
3. This function replaces L in (4)

The optimal value of α in each case was determined by sweep-
ing the value from 0 to 1 in increments of 0.1 and evaluating per-
formance on the development set. The value which resulted in the
highest score on the development set was chosen for decoding.

Figure 1 shows the phone error rate (PER) for the development
and core test sets as a function of the task weight α for multi-task
learning with phonetic context. The left most point (α = 0) corre-
sponds to conventional single-task learning while the rightmost point

DNN Secondary Task Dev Core Test
Task Weight PER (%) PER (%)

4x2048 – – 19.43 21.63
4x2048 Phone Label 0.7 19.04 21.53
4x2048 Frame Context 0.6 19.26 20.98
4x2048 Phone Context 0.3 18.78 20.25

8x2048 [1] – – – 20.70

Table 1. Phone error rate on TIMIT for single and multi-task DNN-
HMM systems.

(α = 1) gives equal importance to all tasks during training. In this
case, both the development and core test sets have an optimum at
0.3.

4.4. Results

Table 1 compares the performance of the baseline DNN-HMM sys-
tem and the three proposed multi-task learning systems. For the
MTL systems, the selected task weight α is also shown. As the
table indicates, using phone label classification improves the dev set
performance but only marginally improves performance on the test
set. An bigger improvement is obtained using the labels of the adja-
cent frames as context, while the best performance is achieved using
multi-task learning with the prediction of left and right phonetic con-
text.

The table also shows the performance of a DNN-HMM that has
eight hidden layers but is otherwise identical to the baseline network
used in this work [1]. This system achieved the best performance
in the literature on this task for a DNN that uses a standard feed-
forward network architecture. By using multi-task learning, a com-
parable system with only four hidden layers can achieve superior
performance.

5. CONCLUSION

In this paper we propose a way to improve the performance of DNN
acoustic models using multi-task learning. In multi-task learning,
the network is trained to perform both the primary classification task
and one or more additional related problems using a shared repre-
sentation. If suitable secondary tasks are chosen, the network can
leverage the common structure in the different tasks to learn a model
with better generalization capability. Multi-task learning is attrac-
tive because the additional model parameters associated with the sec-
ondary task are used only in training and can be discarded at runtime.
This means that improved performance can be obtained without any
additional decoding complexity. For the primary task of context-
independent phonetic state classification, three secondary tasks were
proposed. The best performance was obtained using a system that
used the prediction of the left and right phonetic context as the sec-
ondary tasks. The resulting MTL-DNN-HMM system significantly
improved upon an equivalent single task network and outperformed
a DNN-HMM with twice as many hidden layers. In the future, we
will investigate the use of multi-task learning for context-dependent
acoustic models, where the primary task is senone classification.
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