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ABSTRACT

Log-linear models find a wide range of applications in pat-
tern recognition. The training of log-linear models is a con-
vex optimization problem. In this work, we compare the
performance of stochastic and batch optimization algorithms.
Stochastic algorithms are fast on large data sets but can not be
parallelized well. In our experiments on a broadcast conver-
sations recognition task, stochastic methods yield competitive
results after only a short training period, but when spending
enough computational resources for parallelization, batch
algorithms are competitive with stochastic algorithms. We
obtained slight improvements by using a stochastic second
order algorithm. Our best log-linear model outperforms the
maximum likelihood trained Gaussian mixture model base-
line although being ten times smaller.

Index Terms— discriminative models, optimization, speech
recognition

1. INTRODUCTION

Conventional speech recognition systems follow the genera-
tive statistical approach. Typically, hidden Markov models
(HMMs) with Gaussian mixture models (GMMs) as emis-
sion models are used for modeling the joint probability of
the spoken word sequence and the acoustic vector sequence.
Such models can be trained efficiently with the expectation
maximization (EM) algorithm. Their performance can be im-
proved by a subsequent discriminative training, e.g. accord-
ing to the minimum phone error (MPE) [1] criterion.

In recent years, the interest in discriminative models for
speech recognition has greatly increased. Strong empirical
results have been obtained with hierarchical discriminative
models, e.g. [2]. Another line of research studies discrimi-
native models with a flat structure [3, 4, 5, 6]. Our interest is
in the use of log-linear models, which are attractive, because

This work was partly realized under the Quaero Programme, funded by
OSEO, French State agency for innovation. The research leading to these
results has received funding from the European Union Seventh Framework
Programme EU-Bridge (FP7/2007-2013) under grant agreement N287658.
H. Ney was partially supported by a senior chair award from DIGITEO, a
French research cluster in Ile-de-France.

they are statistical models with a convex training criterion.
The convexity allows for finding the global optimum of the
training criterion. In our recent work, we showed that perfor-
mance competitive to discriminatively trained GMMs can be
obtained by using log-linear models [7].

A drawback of all discriminative approaches are the high
computational costs required in training. Therefore, the ef-
ficiency of optimization algorithms is an important research
topic. In general, optimization methods for machine learn-
ing can be subdivided into two categories: batch algorithms
and stochastic algorithms. In batch algorithms, the statistics
which are used for updating the model are computed on the
full dataset. In stochastic algorithms, only a small random
subset is used. Stochastic algorithms are very promising on
large and redundant datasets. However, batch algorithms can
be accelerated strongly by using second order information.
This is in contrast to the most widely used stochastic opti-
mization algorithm stochastic gradient descent (SGD). Fur-
ther, batch algorithms can be parallelized straightforwardly.
Stochastic algorithms are widely used for training hierarchi-
cal models. For convex optimization, typically batch algo-
rithms are employed. However, in recent years, stochastic
algorithms have gained a lot of attention for convex models
[8], [9], [10], [11].

In this paper, we investigate whether stochastic algorithms
are beneficial for optimizing log-linear models. Further-
more, we compare SGD with several stochastic algorithms
that make use of second order information. In addition, we
compare the numerical robustness of stochastic and batch
algorithms. Experiments are performed on a challenging
English broadcast conversation task.

2. MODEL AND TRAINING CRITERION

Log-linear models are used to model class-posterior prob-
abilities. Let X ⊂ RD denote the observation space and
C = {1, . . . , C} a set of classes. A log-linear model is of
the form

pΛ(c|x) =
exp(

∑D
d=1 λc,dxd)∑

c′∈C exp(
∑D

d=1 λc′,dxd)
, (1)
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where Λ = (λ1; . . . ;λC)T ∈ RC×D are the parameters of
the model, x ∈ X is an observation, and c ∈ C is a class.
Note that log-linear models correspond to linear classifiers.
Non-linear decision boundaries can be achieved by mapping
observations into a higher-dimensional space. A generic ap-
proach is the use of polynomial features, as e.g. in [6].

The natural training criterion of log-linear models is the
penalized conditional maximum likelihood criterion, which
minimizes the objective function

F(Λ) = − 1

N

N∑
n=1

log pΛ(cn|xn) +
α

2
‖Λ‖2 . (2)

The last term is a regularization term with the regularization
constant α ≥ 0. An important property of log-linear mod-
els is that their training according to the penalized maximum
likelihood criterion is a convex optimization problem.

Given an HMM state alignment, log-linear models can be
trained on frame-level, i.e., the classes are HMM states and
the the observations are acoustic features. Such log-linear
models can be used in HMM speech recognizers via the hy-
brid approach [12].

3. OPTIMIZATION ALGORITHMS

We compare two different types of algorithms for convex op-
timization: batch algorithms and stochastic algorithms. In the
following, we give a brief description of the optimization al-
gorithms which we consider here.

3.1. LBFGS

The most widely used batch algorithm for log-linear models
is LBFGS [13]. LBFGS builds up a model of the inverse Hes-
sian matrix from a limited history of the previous gradients
and iterates. There exists a well-founded convergence the-
ory for LBFGS, see e.g. [14]. Note that LBFGS has a natural
stepsize of 1.0, which mostly gives a sufficient decrease in the
objective function. Therefore, a line-search can be avoided in
most iterations, because the objective function can be evalu-
ated together with the gradient of the next iteration without
additional costs.

3.2. Rprop

Rprop [15] is a batch algorithm well known in the field of
neural networks. Rprop uses separate learning rates for all pa-
rameters, which are computed from the signs of the gradient.
The use of separate learning rates per parameter corresponds
to a diagonal second order model of the objective function.
There exist slightly different modifications of the basic Rprop
algorithm. In our experiments, we used the iRprop+ variant
proposed in [16]. In order to guarantee convergence of Rprop,
a line search has to be employed [17]. However, in practice

this is not necessary, when a sufficiently small initial learn-
ing rate is chosen. Rprop has only few tuning parameters, is
simple to implement, and shows good empirical results.

As all batch algorithms, Rprop and LBFGS can be paral-
lelized straightforwardly by distributing the computation of
the gradient (data-parallelism).

3.3. Stochastic Gradient Descent

For stochastic algorithms, the gradient is computed on a ran-
dom mini-batch only. The most widely used stochastic algo-
rithm is stochastic gradient descent (SGD). The update fol-
lows a simple iterative rule:

Λt+1 = Λt − ηt∇F(Λt,Bt), (3)

where ηt is the learning rate in step t, Bt is a random subset of
the training data, and ∇F(Λ,B) is the gradient of F at Λ on
B. It can be shown (see e.g. [18]) that SGD converges almost
surely towards the optimum, if the learning rates fulfill

∞∑
t=1

ηt =∞ and
∞∑
t=1

η2
t <∞ , (4)

and the samples are identically distributed and independent
(iid). In our experiments, we use learning rates defined by

ηt =
τ

τ + t
η0 , (5)

where η0 is the initial learning rate, and τ controls how fast
the learning rates decrease over time. Iid samples are simu-
lated, by shuffling the dataset. This requires that all samples
have to be loaded into memory. Note that this is not required
for batch algorithms, because they do not depend on the order
of the samples.

A major disadvantage of stochastic algorithms is that they
can not be parallelized well. Data-Parallelism is only possible
within one mini-batch, which is typically in the size of a few
hundred to a few thousand samples.

In contrast to LBFGS and Rprop, SGD does not make use
of any second order information. However, the advantage of
SGD is that it frequently updates the model. This is in par-
ticular useful, when working with very large datasets. In a
number of works, stochastic algorithms that make use of sec-
ond order information have been proposed. In this work, we
compare SGD with two stochastic second order algorithms
that seemed most promising to us.

3.4. Online LBFGS

The first one is an online version of LBFGS, which has been
proposed in [11]. As in LBFGS, an approximation to the in-
verse of the Hessian matrix is built up from differences of sub-
sequent gradients and models. In online LBFGS (oLBFGS),
the stochastic gradient is used instead of the exact gradient.
Online LBFGS requires that the gradients that are used for
computing the difference, are computed on the same mini-
batch. This means that on each mini-batch, two gradient eval-
uations have to be performed instead of one as in SGD.
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train dev10 eval10 eval11

Amount of data 103h 3.3h 3.7h 3.3h

WER ML - 25.5 25.1 32.2
WER MPE - 24.0 24.0 30.6
WER log-linear - 24.8 24.7 31.7

Table 1. Corpus statistics for the 2010 English Quaero corpus
and word error rates (WER) of the ML and MPE baseline
systems, and the log-linear system.

3.5. Stochastic Levenberg-Marquardt

The second algorithm is known as the stochastic Levenberg-
Marquardt algorithm [19] (SLM) and is widely used for the
optimization of convolutional neural networks. Analogously
to the Levenberg-Marquardt algorithm, the update is

Λt+1 = Λt − ηtBt∇F(Λt,Bt) , (6)

where Bt is an approximation to the inverse of the Hessian
matrix.

In SLM, only a diagonal approximation of the Hessian ma-
trix is used. For log-linear models, the diagonal of the Hessian
matrix on a mini-batch can be computed exactly with only
small additional costs. In order to compensate for stochastic
noise, the diagonal stochastic Hessian matrix is smoothed us-
ing the estimate of the previous iteration and interpolated with
the identity matrix.

4. EXPERIMENTAL RESULTS

In this section, we describe experiments with log-linear mod-
els on the 2010 English Quaero broadcast conversations
recognition corpus.

4.1. Experimental Setup

Our GHMM baseline system is a simplified version of our
evaluation system [20]. In contrast to our evaluation system,
the baseline system is only a single one-pass system without
multi-layer perceptron (MLP) features. See Table 4.1 for cor-
pus statistics and baseline results.

The baseline system uses MFCC features with vocal tract
length normalization and a voicedness feature. Context is in-
corporated by concatenating features from a window of nine
frames. The dimension of the resulting feature vector is re-
duced to 45 by means of an LDA. The GMM has a pooled,
diagonal covariance matrix and models 4500 generalized tri-
phones. An ML model is trained with the EM algorithm with
a splitting procedure. The GMM has roughly one million den-
sities. The ML model is used as initialization for an MPE
training. The recognition lexicon consists of 150k words with
multiple pronunciations. The language model is a smoothed
4-gram, trained on roughly three billion words.

The log-linear system uses the same baseline features and
the same state tying as the GHMM system. We use polyno-
mial features of second order for the log-linear model, which
are computed from the baseline features. We applied a mean
and variance normalization to the features in order to improve
the condition of the optimization problem [21]. The dimen-
sion of the second order features is 1080. The number of pa-
rameters of the log-linear model is 4.86 million, and thus only
about one tenth of the GMM models. The small size of the
log-linear models is beneficial in applications where memory
usage is an issue. Furthermore, the decoding speed directly
depends on the model size.

For LBFGS, we chose a history size of 20. For all exper-
iments with stochastic algorithms, mini-batches of size 4500
are used. We tested smaller mini-batch sizes as well, but the
results were slightly worse. The parameters of the learning
rate (5) were optimized using roughly one million frames. In
our experiments, we observed that it is very important to use
a smaller learning rate for the bias parameters than for the
other parameters (0.1 times the standard learning rate in our
experiments).

4.2. Comparison of Batch Algorithms with SGD

In our first set of experiments, we compared SGD with the
batch algorithms. We distributed the computation of the batch
gradient on one hundred CPUs. For SGD, we used multi-
threading with eight threads.

Rprop takes about 38 iterations to reach the objective func-
tion value of SGD after only a single data sweep. However,
in the late phase of convergence, SGD is quite slow. Inter-
estingly, Rprop is roughly three times faster than the widely
used LBFGS. The overall computation time of SGD is much
lower than that of Rprop. In wall clock time, Rprop is com-
petitive to SGD because of the better parallelizability. Which
algorithm is preferable depends on the amount of resources
that one is willing to spend.

An important issue for the practical application of batch
and stochastic algorithms is their sensitivity to rounding er-
rors. Surprisingly, this issue did not receive much attention in
the comparison of stochastic and batch algorithms. Stochas-
tic algorithms are inherently robust to rounding errors. Since
their search direction is computed on a random sample, the
sampling noise will typically be much higher than the effect
of rounding errors. For batch algorithms, significant round-
ing errors occur in the accumulation of the gradient, because
a summation over the complete dataset is performed. In prac-
tice, this means that for batch algorithms, double precision is
required at least for the data structure that holds the accumu-
lated gradient. When using single precision for Rprop, the
training diverged after 25 iterations, and only reached a WER
of 56.1%. For stochastic algorithms, we did not observe any
difference in performance when using only single precision.
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4.3. Stochastic Second Order Algorithms

Since batch algorithms benefit strongly from incorporating
second order information, it is promising to incorporate sec-
ond order information into stochastic algorithms. We com-
pared the performance of SGD with the oLBFGS and SLM. In
our experiments, the investigated stochastic second order al-
gorithms perform slightly better than SGD, see Table 2. In the
first iterations, both, oLBFGS and SLM, perform worse than
SGD. But in the vicinity of the solution, they converge faster
than SGD, see Figure 1. Note that the second order algo-
rithms require additional computational effort. In particular,
oLBFGS requires two gradient evaluations per batch, hence
doubling the computational demands. In contrast, the addi-
tional computational costs of SLM are low. We also tested
SGD-QN [10], a stochastic second order algorithm which re-
ceived a lot of attention in literature. But in our experiments,
SGD-QN failed to converge, presumably because it does not
deal well with small regularization constants.
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Fig. 1. Objective function of SGD, SLM, and oLBFGS.

4.4. Effect of Feature Normalization

The possible gains from using second order algorithms might
be limited, because the mean and variance normalization of
the features already captures an important part of the sec-
ond order information of the convex objective function, cf.
[21]. We examined this hypothesis by using the stochastic
algorithms for training with unnormalized features. All al-
gorithms performed worse without normalization of the fea-
tures, see Table 2. While the performance of SGD and SLM
degraded only by about one percent WER, oLBFGS was af-
fected much stronger. This result is surprising, because the
goal of incorporating second order information into stochas-
tic algorithms, is to better cope with such ill-conditioned op-
timization problems than SGD.

data sweep normalized unnormalized

WER F WER F
SGD 5 25.3 2.937 26.6 3.050
SGD 10 25.2 2.922 26.2 3.017
oLBFGS 5 25.1 2.938 33.1 4.109
oLBFGS 10 24.9 2.905 32.3 4.055
SLM 5 25.1 2.940 25.7 3.020
SLM 10 24.8 2.905 25.8 3.007

Rprop 50 25.6 2.985 26.8 3.138
Rprop 100 25.3 2.935 − −
LBFGS 50 27.8 3.004 − −
LBFGS 100 26.1 3.194 − −

Table 2. WERs on quaero-dev10 and objective function val-
ues on the training data for SGD, oLBFGS, SLM, Rprop, and
LBFGS with and without feature normalization.

5. DISCUSSION

In literature, stochastic algorithms are typically seen as supe-
rior to batch algorithms for the optimization of discriminative
models. This point of view can be supported by theoretical ar-
guments [22]. However, these considerations do not take the
possibility of parallel computation into account. Furthermore,
batch algorithms require much less tuning than stochastic al-
gorithms.

In our work, we empirically compared different stochastic
and batch algorithms on a large-scale task. Our results show
that batch algorithms are a valid choice when enough com-
putational resources for parallelization are available. In par-
ticular, Rprop performs similar to stochastic gradient descent
in terms of wall clock time, depending on the degree of par-
allelization. Interestingly, LBFGS, which is the most-widely
used batch algorithm for the optimization of discriminative
models, is much slower than Rprop.

Since batch algorithms make efficient use of second-order
information, it is tempting to exploit second-order informa-
tion in stochastic algorithms as well. We empirically com-
pared two stochastic second-order algorithms which seemed
most promising to us: oLBFGS [11], which previously
has only been applied to small-scale tasks, and stochastic
Levenberg-Marquardt [19], which is widely used for con-
volutional neural networks. The second-order algorithms
continue improving at a point where SGD already begins
to stagnate. Still, only the use of SLM is recommendable,
because oLBFGS causes a large computational overhead.

Our best system, trained with SLM, yields a relative im-
provement of 3% WER over the ML trained GMM baseline.
The MPE trained GMM performs better than the log-linear
model, but at the cost of ten times more parameters.
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Schlüter, and Hermann Ney, “Investigations on features
for log-linear acoustic models in continuous speech
recognition,” in Automatic Speech Recognition and Un-
derstanding (ASRU), 2009 IEEE Workshop on, 2009,
pp. 52–57.

[7] Simon Wiesler, Ralf Schlüter, and Hermann Ney, “Ac-
celerated batch learning of convex log-linear models for
lvcsr,” in Interspeech, 2009, pp. 52–57.

[8] SVN Vishwanathan, N.N. Schraudolph, M.W. Schmidt,
and K.P. Murphy, “Accelerated training of conditional
random fields with stochastic gradient methods,” in Pro-
ceedings of the 23rd International Conference on Ma-
chine Learning, Pittsburgh, USA, June 2006, pp. 969–
976.

[9] S. Shalev-Shwartz, Y. Singer, and N. Srebro, “Pega-
sos: Primal estimated sub-gradient solver for svm,” in
Proceedings of the 24th international conference on Ma-
chine learning. ACM, 2007, pp. 807–814.

[10] A. Bordes, L. Bottou, and P. Gallinari, “Sgd-qn: Careful
quasi-newton stochastic gradient descent,” Journal of
Machine Learning Research, vol. 10, pp. 1737–1754,
2009.

[11] N. Schraudolph, J. Yu, and S. Günter, “A stochastic
quasi-newton method for online convex optimization,”
in International Conference on Artificial Intelligence
and Statistics, San Juan, Puerto Rico, March 2007, pp.
436–443.

[12] H. Bourlard and N. Morgan, Connectionist speech
recognition: a hybrid approach, vol. 247, Springer,
1994.

[13] D.C. Liu and J. Nocedal, “On the limited memory bfgs
method for large scale optimization,” Mathematical pro-
gramming, vol. 45, pp. 503–528, 1989.

[14] Jorge Nocedal and Stephen Wright, Numerical Opti-
mization, Springer, 1999.

[15] M. Riedmiller and H. Braun, “A direct adaptive method
for faster backpropagation learning: The rprop algo-
rithm,” in Proceedings of the International Conference
on Neural Networks, March 1993, pp. 586–591.
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[18] Léon Bottou, “Online learning and stochastic approx-
imations,” in Online Learning in Neural Networks,
David Saad, Ed., pp. 9–43. Cambridge University Press,
Cambridge, UK, 1998.

[19] Y. LeCun and L. Bottou, “Efficient backprop,” in Neu-
ral networks: Tricks of the trade, G. Orr and K. Müller,
Eds., pp. 546–546. Springer, New York, USA, 1998.

[20] M. Sundermeyer, M. Nußbaum-Thom, S. Wiesler,
C. Plahl, A.E.D. Mousa, S. Hahn, D. Nolden,
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