
KERNELIZED LOG LINEAR MODELS FOR CONTINUOUS SPEECH RECOGNITION

Shi-Xiong Zhang and M.J.F. Gales

Department of Engineering, University of Cambridge, Cambridge, UK
{sxz20, mjfg}@eng.cam.ac.uk

ABSTRACT
Large margin criteria and discriminative models are two ef-
fective improvements for HMM-based speech recognition.
This paper proposed a large margin trained log linear model
with kernels for CSR. To avoid explicitly computing in the
high dimensional feature space and to achieve the nonlin-
ear decision boundaries, a kernel based training and decod-
ing framework is proposed in this work. To make the system
robust to noise a kernel adaptation scheme is also presented.
Previous work in this area is extended in two directions. First,
most kernels for CSR focus on measuring the similarity be-
tween two observation sequences. The proposed joint kernels
defined a similarity between two observation-label sequence
pairs on the sentence level. Second, this paper addresses how
to efficiently employ kernels in large margin training and de-
coding with lattices. To the best of our knowledge, this is
the first attempt at using large margin kernel-based log linear
models for CSR. The model is evaluated on a noise corrupted
continuous digit task: AURORA 2.0.

Index Terms— log linear model, large margin, kernel

1. INTRODUCTION

Most continuous speech recognition (CSR) is based on gener-
ative models, in the form of Hidden Markov Models (HMMs).
Although discriminative training of HMMs has been shown to
yield performance gains [1,2], the underlying models are still
generative, with the sentence posterior being computed via
the Bayes’ rule. This has led to interest in discriminative mod-
els for CSR, e.g., Conditional Random Fields (CRF) [3], lo-
gistic regression machines [4], Conditional Augmented mod-
els (C-Aug) [5] and Structured Support Vector Machines (S-
SVM) [6], where the posterior of the sentence given the ob-
servation can be directly modelled. For these discriminative
models two important decisions need to be made: the form of
the features to use and the appropriate training criterion.

A number of features have been investigated at the frame,
model and word level [3, 7–9]. Although, it has been shown
that the use of high-dimensional features, such as polyno-
mial [10] and derivative features [8], can improve the perfor-
mance, they are often trained using Conditional Maximum
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Likelihood (CML) [5, 11]. For high-dimensional features,
there may be issues with generalisation. To address this there
has been interest in large margin [9, 12] approaches. How-
ever, in these approaches, the features are explicitly defined
and computed. Thus, the computational cost and memory re-
quirement are at least propositional to the number of features.

To handle extremely high (or infinite) dimensional fea-
tures, several methods based on the kernel trick have been
developed [13]. These methods handle the high-dimensional
feature φ(O) of observation sequence O simply by focus-
ing on the kernel function, K(Oi,Oj) = φ(Oi)

T
φ(Oj).

Kernels can be computed based on O to avoid computing
the high-dimensional φ(·). Although kernel methods has
been partially evaluated for frame-level phoneme classifica-
tion tasks [14, 15], not much work has been reported on large
margin kernel methods for continuous speech recognition.

To kernelize the sentence-level log linear models for CSR,
this paper proposes a joint kernel K ((Oi,wi), (Oj ,wj)) =

φ(Oi,wi)
T
φ(Oj ,wj), which defines a similarity between

observation-word sequence pairs, (O,w). The proposed joint
kernel can be decomposed at a segmental level, which allows
efficient large margin training and decoding with lattices. One
elegant property of this framework is the interface between
the speech data and the learning algorithm is made uniquely
through the joint kernel function, where all the domain knowl-
edge can be incorporated. The system is evaluated on a noise
corrupted continuous digit task: AURORA 2.0.

2. LOG LINEAR MODELS

Given an observation sequence, O = {o1, . . . ,oT }, the pos-
terior of the hypothesised labels w = {w1, . . . , w|w|} for
many generative and discriminative models, e.g., CRFs and
C-Augs can be expressed as a log linear model (LLM)

P (w|O;α) =
1

Z
exp

(
αTφ(O,w)

)
, (1)

where Z is the normalisation term and α are the log linear
model parameters. φ(O,w) is a joint feature vector charac-
terizing the statistical dependencies of (O,w). Recognition
with this form of model only depends on the inner product of
parameters and features

ŵ = argmax
w

P (w|O;α) = argmax
w

αTφ(O,w). (2)
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In CSR the training data is always limited, to make the model
generalize well on a high-dimensional space, a large margin
criterion can be applied [9, 12]. Given that the training data
consists of pairs

{
O(r),w

(r)
ref

}R
r=1

, where O(r) is the rth ob-

servation sequence and w
(r)
ref is its reference label sequence,

the LLM can be large margin trained by minimising
R∑
r=1

[
max

w 6=w
(r)
ref

{
L(w(r)

ref,w)− log

(
P (w

(r)
ref|O(r);α)

P (w|O(r);α)

)}]
+

(3)

where L(w(r)
ref,w) is a loss function introduced to control the

size of the margin and [ ]+ is the hinge-loss function. Here the
margin is defined as the distance between the reference w

(r)
ref

and “closest” competing word sequence w in the log poste-
rior domain [9]. A Gaussian prior, log p(α) ∝ − 1

2C ||α||
2,

is usually introduced into the training criterion, where CI
is the covariance matrix of Gaussian prior [9]. Substituting
equation (1) into (3) and canceling out the normalization term
yields the following convex optimization

min
α,ξ

1

2
||α||22 +

C

R
ξ (4)

s.t. ∀ competing hypothesis
{
w(1), . . . ,w(R)

}
∈ WR :

αT
R∑
r=1

[
φ(O(r),w

(r)
ref)− φ(O(r),w(r))

]
≥

R∑
r=1
L(w(r)

ref,w
(r))− ξ

where ξ ≥ 0 is a slack variable introduced to replace [ ]+. (4)
can be solved using the cutting plane algorithm [16].

3. KERNELIZATION

The discussion of LLM parameters and features has so far as-
sumed that there is an explicit representation of each of these.
It is also possible to consider a more general form that can
be highly efficient in dealing with large feature spaces. Since
the model uses an inner product between model parameters
and features, it is possible to kernelize this operation in the
same way as in non-linear SVMs [17]. This allows the “ker-
nel trick” to be used to avoid explicitly computing and saving
the large feature space.

Similar to SVMs [17], to kernelize the log linear model,
the large margin training criterion (4) must be rewritten in
the dual form. Note that the LLM parameters α are not
trained directly in the dual case. Instead the dual variables
αdual = [αdual

1 , . . . , αdual
τ , . . . , αdual

n ], where n is the number
of training iterations, are learned by solving the optimization

max
αdual
τ ≥0

n∑
τ=1

αdual
τ Lτ −

1

2

n∑
τ=1

n∑
t=1

αdual
τ αdual

t gt,τ (5)

s.t.
n∑
τ=1

αdual
τ = C

where Lτ = 1
R

∑R
r=1 L(w

(r)
ref,w

(r)
τ ) is the average loss and

w
(r)
τ is the competing word sequence for the rth utterance on

the τ th iteration. gt,τ is defined as the following inner product

Algorithm 1: Kernelized large-margin log linear model

Input: {(O(r),w
(r)
ref}Rr=1 and joint kernel function K;

repeat
/* Step-1: Solve current dual program */

αdual ← maxsimising equation (5)

/* Step-2: Find “closest” competing hypothesis */
for r = 1..R do

w
(r)
n+1 ← argmax

w

{
L(w(r)

ref,w) +αTφ(O(r),w)
}
(8)

where αTφ(O(r),w) is implicitly computed using (13)

/* Step-3: Update Gram matrix H */
Compute [gτ,n+1]

n+1
τ=1 , Update Gn×n → G(n+1)×(n+1)

n = n+ 1;

until /* no new “closest” competing hypothesis can be found */ ;
return αdual

gt,τ =
1

R2

[
R∑
i=1

(
φ(O(i),w

(i)
ref)− φ(O(i),w

(i)
τ )
)]T

(6)[
R∑
j=1

(
φ(O(j),w

(j)
ref)− φ(O(j),w

(j)
t )
)]

Note that the dual optimization (5) only depends on the Gram
matrix G = [gt,τ ]n×n, where gt,τ depends on the inner prod-
uct of the joint feature vectors φ(·), and thus can be replaced
by a joint kernel function,

K
(
(O(i),w(i)), (O(j),w(j))

)
= φ(O(i),w(i))Tφ(O(j),w(j))

(7)

These joint kernels are easier to describe analytically, since
they express the correlation between two (O,w) pairs [18].
More details will be discussed in Section 3.1. Thus the in-
terface between the speech data and the learning algorithm is
made uniquely through this joint kernel function.

The kernelized training algorithm can be simply describes
in three steps. First, solve the dual quadratic program (5)
based on the current Gram matrix G. At iteration n this
will return an n-dimensional αdual. Second, use the current
αdual to find the “closest” competing hypothesis w

(r)
n+1 for

each utterance r in parallel. These w
(r)
n+1|r=1,...,R will be

used to compute the losses and the kernels. Third, compute
the kernel values and update the Gram matrix. The process
is summarized in Alg. 1. The algorithm is guaranteed to con-
verge as long as the Gram matrix G is positive definite. Note
that in kernelized SVMs the size of Gram matrix GR×R is
fixed [17]; however for kernelized LLMs the size of Gn×n is
dynamic and depends on the number of “closest” competing
hypotheses. In practice, the returned αdual is usually sparse.
To reduce the memory cost, w

(1)
τ , . . . ,w

(R)
τ and the τ th row

of Gram matrix can be pruned when the corresponding αdual
τ

remains 0 for more than 100 iterations.
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Note that similar to SVMs, the LLM parameter α can be
retrieved from αdual by linearly combining the joint features
of the reference and competing hypothesises,

α =
1

R

∑
∀τ,r

αdual
τ

[
φ(O(r),w

(r)
ref)− φ(O(r),w(r)

τ )
]

(9)

3.1. Joint Kernels

To avoid working in the high-dimensional features space, in
the previous section the joint kernel is introduced to replace
the inner product of joint features. The point of joint ker-
nel K

(
(O(i),w(i)), (O(j),w(j))

)
is to describe a non-linear

similarity between two observation-label pairs by mapping
the pairs into a joint feature space. Joint kernels have al-
ready begun to be studied in [16, 18]. In theory any func-
tion in the form of (7) can be treated as a joint kernel. To
enable efficient decoding (see more in Section 3.2), denot-
ing O(i) = {O(i)

1 , . . . ,O
(i)
k , . . .} and its corresponding word

labels w(i) = {w(i)
1 , . . . , w

(i)
k , . . .}, this paper proposes the

following joint kernel function

K
(
(O(i),w(i)), (O(j),w(j))

)
=

|w(i)|∑
k=1

|w(j)|∑
m=1

δ(w
(i)
k , w(j)

m ) k(O
(i)
k ,O(j)

m ) (10)

where k(·, ·) is a kernel commonly used in SVMs [13]. O
(i)
k

is the observations for the kth segment in utterance i, andw(i)
k

is its label. One interesting property of this joint kernel is that
it can be decomposed into a set of word-level kernels k. If
w

(i)
k 6= w

(j)
m , the term δ will be zero and there is no need

to compute the kernel k. This makes efficient kernel-based
decoding become possible (see more in Section 3.2).

As the length of observation sequences varies, k(·, ·)
should be a sequence kernel, e.g., generative kernels [9] are
a good option as they allow standard model-based compensa-
tion schemes to be used to make the kernel robust to noise.
In this paper, a generative kernel is combined with three com-
monly used static kernels,

klin(Ok,Om) = ϕλ(Ok)
Tϕλ(Om)

kpoly(Ok,Om) =
(
ϕλ(Ok)

Tϕλ(Om) + b
)d

(11)

krbf(Ok,Om) = exp
(
− 1

2σ2
||ϕλ(Ok)−ϕλ(Om)||2

)
where the ϕλ is a generative kernel induced feature vector

ϕλ(O) =

 log pλ(O|v1)
...

log pλ(O|vM)

 , (12)

where λ denotes the HMM parameters, pλ(O|vk) is the like-
lihood for HMM vk, and M is the total number of HMMs.
This feature space concatenates the log-likelihoods from all
models, including the correct model and competing ones, to

yield additional information from the observations. Other fea-
tures, such as derivative features ϕ∇(O) [8], can also be ap-
plied here. The relationship between the kernel k in (11) and
joint kernel K in (10) can be illustrated in Fig 1.
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Fig. 1. An example of joint kernel K and its joint feature φ.
On each segment kernel krbf(·, ·) = ψ(·)Tψ(·) is applied.

3.2. Kernel-based Decoding
Substituting equation (9) into (2), kernel-based decoding can
be achieved by

ŵ = argmax
w

αTφ(O,w) = argmax
w

(13)

∑
∀τ,r

αdual
τ

[
K
(
(O,w), (O(r),w

(r)
ref)
)
−K

(
(O,w), (O(r),w

(r)
τ )
)]

where w
(r)
τ |r=1,...,R

τ=1,...,n are the competing word sequences found
in the training phase.1 Similar to the discriminative training
in [1], lattices L are generated during training and decoding
to restrict the search space of w. Since the joint kernel K
in (10) can be decomposed at the word level, the w that max-
imises (13) can be efficiently found via the following arc-level
Viterbi search

ρe = max
e′∈L
{ρe′ + se′e} (14)

where e is a node in the L, e′ is one of its previous nodes, and
ρe is the best path score at node e as shown in Fig. 2. se′e is
the decomposed kernel scores for the arc e′e:
n∑
τ=1

αdual
τ

∑
arc=e′e
arc∈A

k(Oe′e,Oarc)−
n∑
τ=1

αdual
τ

∑
arc=e′e
arc∈Bτ

k(Oe′e,Oarc)

where A denotes all the reference arcs in the numerator lat-
tices and Bτ denotes all the competing arcs in the “closest”
competing hypotheses generated in (8) at iteration τ .

Start

arc

End

Fig. 2. Kernel-based decoding over a lattice.

1Similar to support vectors in the SVM classification [17], here w(r)
τ and

w
(r)
ref can also be viewed as support vectors.
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4. KERNEL ADAPTATION

As previously discussed, one advantage of using generative
models to define the kernels (see equation (11) and (12) ) is
that it is possible to use state-of-the-art model-based noise ro-
bustness approaches. For standard generative models, model-
based compensation schemes such as Vector Taylor Series
(VTS) compensation [19] are a successful approach to han-
dling this problem. Here, the HMM parameters λ associated
with the kernel k are modified to represent the target acoustic
environment [20]. The compensated mean and covariance for
component m in λ, are given by

µ(m) =C log
(

exp(C-1(µ(m)
x + µh) + exp(C-1µn)

)
Σ(m) =J(m)Σ(m)

x J(m)T + (I− J(m))Σn(I− J(m))T

where the additive noise mean µn and covariance Σn are the
parameters of the noise model estimated from the data [21].
Other terms include the DCT, matrix C and Jacobian matrix
J(m) are fully described in [19]. Thus in this work discrimina-
tive model parameters αdual are noise-independent, whereas
the generative model λ based kernel k is noise-dependent.

5. EXPERIMENTS AND CONCLUSION

The performance of the proposed kernelized LLM was eval-
uated on the AURORA 2 task. AURORA 2 is a standard
noise-robust digit string recognition task. The vocabulary
size M is 12 (one to nine, plus zero, oh and silence). The
8440 clean training utterances were used to train the acous-
tic generative models (HMMs). To compare with previously
published results, this paper follows the same setup in [20],
including the configurations of MFCCs and HMMs. Test set
A was used as the development set for tuning parameters for
all systems, such as the C in (4). To evaluate the performance
of log linear models, large margin training and kernels, sev-
eral configurations were compared. The baseline system was
HMM with VTS compensation. These compensated HMMs
were also used to derive: the noise robust log-likelihood fea-
tures (12); the word-level segmentation for the multi-class
SVMs; and the training and decoding lattices for the LLMs.
The performances of VTS-compensated HMM, multi-class
SVMs [9] and LLMs with different training criteria and ker-
nels are shown in Table 1. The CML training includes L2

regularization. Detailed results on different SNRs for Set A
are also shown in Table 2.

Examining the results in Table 1 shows that the large mar-
gin LLM with 2nd order polynomial kernel achieved the best
results among all the systems. For multi-class SVMs, the
observation sequence is first segmented into words based on
HMMs and individual words classified independently. The
difference in performance between the LLM and multi-class
SVM systems shows the impact of sentence-level modelling.
The overall gain from using kernelized LLMs over the VTS-
compensated HMM system was over 22%. The gain from us-
ing polynomial kernels over linear kernels was 3%. Note that

Model Criterion Kernel Set A Set B Set C Avg.
HMM-VTS ML – 9.8 9.1 9.5 9.5

M-SVM LM linear 8.3 8.1 8.6 8.3
LLM -1 CML linear 8.1 7.7 8.3 8.1
LLM -2 LM linear 7.9 7.3 8.0 7.7
LLM -3 LM 2nd-poly 7.6 7.1 7.9 7.5

Table 1. Results (WER %) of VTS based HMM, Multi-class
SVMs [9] and LLMs trained using CML and large margin
criteria, with linear and 2nd order polynomial kernels in (11).

SNR Test Set A
(dB) HMM M-SVM LLM -1 LLM-2 LLM-3
20 1.7 1.5 1.4 1.3 1.1
15 2.4 2.0 1.9 1.8 1.7
10 4.4 3.6 3.5 3.3 3.2
05 11.2 9.2 8.9 8.8 8.4
00 29.6 25.1 24.9 24.1 23.8

Avg 9.8 8.3 8.1 7.9 7.6

Table 2. Results (WER %) of VTS based HMM, M-SVM and
LLMs in different SNRs. LLM-1, LLM-2 and LLM-3 are the
systems in Table 1.

without kernelization, it is impractical to apply large margin
LLMs with a polynomial kernel, since it requires computing
and keeping all the high dimensional joint features explicitly.
However, in Alg. 1 only the Gram matrix is required.
Relation to prior work The work presented here is a kernel-
ized version of structured LLMs perviously proposed in [7,9].
According to the large margin criterion (4), it can also be
viewed as a kernelized structured SVM [16,22]. A kernelized
LLM was also proposed in [15]. Note that the kernel in [15]
was defined on the frame-level whereas the joint kernel in
this work is defined on the sentence-level. The kernel algo-
rithm in [15] is based on MMI, whereas the algorithm here
is based on large margin training. The work in [15] is actu-
ally a low-rank approximation of kernel methods whereas in
this paper the exact Gram matrix was used. To the best of our
knowledge, this work is the first attempt at a sentence-level
large-margin kernel method for CSR.
Conclusion This paper proposes a large margin trained log
linear model with kernels for CSR. Kernelizing the LLM has
two advantages. First, it avoids explicitly computing and
saving the high dimensional features. Second, it introduces
nonlinearity to the LLM. A kernel adaptation scheme is also
described to make the system robust to noise. This work
has two main contributions. First, most kernels for CSR fo-
cused on measuring the similarity between two observation
sequences. The proposed joint kernels define a sentence-level
similarity between two observation-label sequence pairs. Sec-
ond, this paper addresses how to efficiently employ kernels in
large margin training and decoding based on lattices. Results
on AURORA 2 demonstrate that using large margin LLMs
with nonlinear kernels yields significant improvements. Fu-
ture work will examine RBF and derivative kernels in the pro-
posed framework.
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