
STATE OF THE ART DISCRIMINATIVE TRAINING OF SUBSPACE CONSTRAINED
GAUSSIAN MIXTURE MODELS IN BIG TRAINING CORPORA

Jing Huang, Peder A. Olsen, Vaibhava Goel

IBM, TJ Watson Research Center
{jghg,pederao,vgoel}@us.ibm.com

ABSTRACT

Discriminatively trained full-covariance Gaussian mixture
models have been shown to outperform its corresponding
diagonal-covariance models on large vocabulary speech
recognition tasks. However, the size of full-covariance model
is much larger than that of diagonal-covariance model and
is therefore not practical for use in a real system. In this
paper, we present a method to build a large discrimina-
tively trained full-covariance model with large (over 9000
hours) training corpora and still improve performance over
the diagonal-covariance model. We then reduce the size of
the full-covariance model to the size of its baseline diagonal-
covariance model by using subspace constrained Gaussian
mixture model (SCGMM). The resulting discriminatively
trained SCGMM still retains the performance of its corre-
sponding full-covariance model, and improves 5% relative
over the same size diagonal-covariance model on a large
vocabulary speech recognition task.

Index Terms— Discriminative Training, Full Covariance
Modeling, Subspace Constrained Gaussian Mixture Model,
Large Corpora

1. INTRODUCTION

Full-covariance models have been shown to outperform the
diagonal-covariance models for maximum likelihood trained
systems [1, 2, 3, 4], as well as for discriminative trained mod-
els [5]. In [5] full-covariance discriminatively trained model
improved performance over the best diagonal covariance
models. This is not always the case as very large diagonal co-
variance model could match the performance of the best full
covariance models, especially when training data is plenty.

Most of the full-covariance work we have seen only deal
with training corpora of modest size (around a couple of hun-
dred hours) and not the larger training corpora currently used
to train state of the art diagonal models. In this paper we dis-
criminatively train full-covariance models that beat the best
large diagonal covariance model. Then we find a compact
representation no larger than that of the diagonal model that
still retains the improved performance.

There are several methods that compactly represent in-
verse covariances with little loss in performance [6, 7, 8, 9, 10,
11, 12, 13, 14], and we used the subspace constrained Gaus-
sian mixture model (SCGMM) representation in [7, 8, 11, 12].
For discriminative training we used the Minimum Phone Er-
ror (MPE) criterion [15], but a number of other competitive
discriminative training criteria exist. For example Maximum
Mutual Information (MMI) [16], Minimum Classification Er-
ror (MCE) [17], Minimum Bayes Risk (MBR) [18], Boosted
MMI (BMMI) [15], and large margin training [19] are some
potential alternatives.

1.1. Overview of our approach

A full covariance gaussian f(x) = N (x;µg,Σg) with mean
µg and covariance Σg can be written in the form of exponen-
tial family

f(x) =
eθ

>
g φ(x)

Zfc(θg)
, where φ(x) =

(
x

vec(xx>)

)
, (1)

and

θg =

(
ψg

pg = vec(Pg)

)
def
=

(
Σ−1g µg
vec(Σ−1g )

)
(2)

and

Zfc(θg) =
1

2
ψ>g P−1g ψg −

1

2
log detPg +

d

2
log(2π) (3)

is the partition function that normalizes the distribution. The
SCGMM model then constructs a new exponential family by
further constraining the parameters θg to be in a subspace;
θg = Bλg , where B ∈ RD×δ , δ � D represents the sub-
space that is shared among all gaussians. This is similar to
the subspace GMM approach in [13], but as we require the
corresponding covariance to be positive definite, our methods
are more complex.

In this paper we experiment with more than 9000 hours of
training data, and the baseline diagonal model has 400, 000
Gaussians. Discriminative full covariance models are first
obtained by a few discriminative iterations starting with the
baseline diagonal covariance model. The “magic constant”
D∗ is determined according to the approach outlined in [5].
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Once a full covariance model is trained, the basis of the
SCGMM are estimated using this model. The projection
coefficients of SCGMM are then discriminatively trained.
Our discriminatively trained SCGMM proves to be effective:
retains the performance of its corresponding full-covariance
model, and improves 5% relative over the same size diagonal-
covariance model on a large vocabulary speech recognition
task.

The rest of the paper is organized as follows: full-
covariance discriminative training is briefly reviewed in
Section 2. Section 3 describes the basis training and discrim-
inative training of subspace constrained Gaussian mixture
model. The experimental setup and results are reported in
Section 4, and conclusions are presented in Section 5.

2. DISCRIMINATIVE TRAINING OF THE
FULL-COVARIANCE MODEL

Recall that the maximum likelihood estimation of a FC model
is equivalent to maximizing the strictly convex objective func-
tion

Q(θg) = s>g θg − cg logZfc(θg), (4)

where sg =
∑
t γg(xt)φ(xt) is the gaussian statistics

weighted by the posterior counts γg(xt), and cg =
∑
t γg(xt)

is the count for the gaussian. For discriminative modeling we
arrive at an auxilliary objective function that has the same
form as (4):

Q(θg, θ̂g) = (snum,g − sden,g +DgEθ̂g
[φ(x)])Tθg (5)

−(
∑
t

γnum,g(xt)− γden,g(xt) +Dg) logZfc(θg),

where θ̂g is the present value of the parameters. Unfortu-
nately, the statistics and counts are not well-formed for all
values of Dg . Therefore we need to judisciously choose Dg

so that the effective count is positive and the effective covari-
ance is positive definite. Dg is usually set using the following
formula:

Dg = τ +max{C1

∑
t

γden,g(xt), C2D
∗
g}, (6)

where τ, C1, C2 are global variables that do not depend on g.
The “magic constant’ D∗g is the smallest value for which Dg

yields a positive definite covariance statistics. It was shown
in [5] how to exactly determine D∗g by solving a quadratic
eigenvalue problem. For C1 > 1 the term C1

∑
t γden,g(xt)

guarantees that counts will be positive and the second term
C2D

∗
g guarantees a positive definite covariance for C2 > 1.

τ can therefore be thought of as a smoothing count. After
the constants τ , C1 and C2 are chosen, and Dg estimated,
the full covariance model is simply computed from the full
covariance statistics in the usual way.

3. SUBSPACE CONSTRAINED GAUSSIAN
MIXTURE MODEL

In determining the SCGMM coefficients λg and the subspace
matrix B there are a number of problems to tackle, but the
theory of exponential families [20] is a great help. The maxi-
mum likelihood objective function

Qg(λg) = s>g λg − cg logZ(λg), (7)

where Z(λg) = Zfc(Bλg), is strictly convex when the statis-
tics and counts are well formed. Therefore the values of λg
can be determined using any convex optimization package
if we know an initial value of λg and B such that the cor-
responding full covariance parameters θg = Bλg is well-
formed. Similarly, we can find B by optimizing the convex
auxilliary objective

Q(B) =
∑
g

s>g λg − cg logZ(λg), (8)

This problem of finding good initial well formed values for
the coefficients λg and the basis matrix B is the most difficult
problem. Luckily this problem has been dealt with for us in
[21], as briefly discussed in the following.

3.1. Initialization

Given a valid initial choice of the parameters λg and B the
parameters λg can be determined using convex optimization
if all other parameters are fixed. On the other hand, if we fix
λg for all g then B can also be determined using convex op-
timization. The key problem is to determine an initial choice
for the parameters.

The basic idea for finding a good initial value is to re-
alize that we simply wish to have Bλg ≈ θg . We can
do this by simply minimizing

∑
g ‖θg − Bλg‖H, where

‖x‖H = x>Hx for some matrix H. For H = I the
quadratic objective function is minimized when B consists
of the top δ eigenvalues of the covariance of θg , and λg is
the minimum least square solution given the eigenvalues, i.e.
Σθ =

∑
g πgθgθ

>
g − µ2

θ, µθ =
∑
g πgθg and πg ∝ cg .

In [21], it was argued that a better choice for H was the
Hessian for the full covariance objective function at µθ. With
this choice of Hessian it was shown that the following trans-
formation (

ψg
pg

)
=

(
Σθ(ψg −Pgµθ)

vec(Σ
−1/2
θ PgΣ

−1/2
θ )

)
(9)

brings the problem back to the H = I case, where we know
how to find B and λg . Then the basis vectors in the trans-
formed space is transformed back into the original space giv-
ing the optimal solution to the quadratic problem. The coeffi-
cients λg are simply given by

λg = (B>HB)−1B>Hθg. (10)

6946



After this process we will have Bλg ≈ θg for most g and a
very good choice for the matrix B. However, there will still be
a few values for which Bλg is not positive definite. For these
values we found a valid value for λg by a method that itera-
tively project onto two convex sets. This method is known as
a generalized Bregman iteration [22]. Let θ(1)g = Bλg . Then
project θ(1)g onto the set of slightly positive definite matrices

Pε =
{
θ =

(
ψ

vec(P)

)
: P � εI

}
(11)

simply by setting all eigenvalues below ε to ε. Then we
project this value onto the linear subspace giving λ(1)

g =

(B>HB)−1B>Hθ(1)g . Since the linear subspace is known
to contain positive definite matrices there exists an ε so that
the set Pε intersects with the linear subspace. The iterative
projection scheme which we showed one iteration of will
eventually converge to a point in the intersection of the two
convex sets. We use the first value k such that Bλ(1)

g is in
Pε/2 as an initial value.

After finding the basis matrix B and valid initial coeffi-
cients λg we simply use convex optimization to maximize (7)
to refine the values for λg and to maximize (8) to refine the
value for B. This is equivalent to doing maximum likelihood
training of the SCGMM parameters given the full covariance
stats.

3.2. Discriminative Training of SCGMM

Training the SCGMM parameters discriminatively boils
down to iteratively solving maximum likelihood problems,
with the exception that we have to decide the value of the
discriminative smoothing parameters Dg . Finding D∗g is a
very difficult problem for the SCGMM model. On the other
hand if Bλg ≈ θg then it is reasonable to expect that D∗g is
very close to the “magic constant” D∗g in the full covariance
case. That is exactly the approach we took. We first collected
the full covariance statistics snum, sden; computed D∗g in the
full covariance case, from which we computed the total full
covariance discriminative statistics

s = snum,g − sden,g +DgEθ̂g
, (12)

and correspondingly for the counts. The corresponding
SCGMM statistics is then simply B>s, and the parameters
is then learned by convex optimization using the projected
full covariance statistics. For a more thorough discussion of
discriminative training of the SCGMM parameters we refer
the readers to [12].

4. EXPERIMENTAL SETUP AND RESULTS

4.1. Experimental Setup

We used an internal US English speech recognition task for
our experiments. The training set consists of 9300 hours of

recordings. The training transcripts are obtained through de-
coding from an existing large vocabulary continuous speech
recognition (LVCSR) system. Recordings that are deemed
(by the recognizer) to be all silence or noise, or sentences de-
coded with very low confidence are excluded from the train-
ing data. There are a total of 300 test speakers with around
2, 400 testing utterances and 24, 000 words.

Acoustic features were constructed from 12 dimensional
Mel-frequency Cepstra coefficients and their first, second and
third derivative, followed by a Linear Discriminant Analysis
(LDA) projection to 32 dimension.

Our baseline acoustic model is an HMM with 35, 000
context-dependent states and with about 400, 000 gaussian
components. The acoustic model was train with maximum
likelihood followed by fMPE (feature-space minimum phone
error rate) training and discriminative MPE (Minimum Phone
Error) training, as described in [23].

4.2. Results

The baseline diagonal model has a word error rate (WER)
of 14.1% on the test data. Table 1 shows the performance
of the discriminatively trained full-covariance model at each
iteration, starting from the diagonal-covariance model. The
final FC model improves 5% relative to the baseline diagonal
model. The gain comes mostly from the first iteration.

iter C1 WER
1 4.0 13.6%
2 8.0 13.5%
3 20.0 13.4%

Table 1. Word error rates (WERs) for each iteration of dis-
criminative training of FC models with MPE.

We then take the FC model at iteration 3 and train
SCGMM as described in Section 3.1. If we set the dimen-
sion of the basis as 64, then the resulting SCGMM has the
same number of parameters as the baseline diagonal model;
If we set the dimension of the basis as 54, then the resulting
SCGMM is 15% smaller than the baseline diagonal model.
Table 2 shows the performance of the discriminatively trained
SCGMMs at each iteration. From Table 3 we show that the
64-dim SCGMM has the same performance as the FC model
it trained from, and is 5% better than the baseline diagonal
model. Even with 54-dim SCGMM the performance is still
better than the baseline model with 15% less model parame-
ters.

4.3. Related Work

SCGMM is just one of many ways to create compact models.
MIC [10] (mixtures of inverse covariances), SPAM (subspace
for precision and mean model) and recent SGMM (subspace
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iter 64-dim 54-dim
1 13.9 14.3
2 13.6 14.1
3 13.5 13.9
4 13.5 13.9
5 13.4 13.8

Table 2. Word error rates (WERs) for each iteration of dis-
criminative training of SCGMMs with MPE.

model WER
baseline 14.1

FC 13.4
SCGMM-64dim 13.4
SCGMM-54dim 13.8

Table 3. Comparison of Word error rates (WERs) for differ-
ent models.

Gaussian mixture models) [13, 24, 25] are also well-known
techniques. SCGMM is a direct generalisation of SPAM,
which in turn is a generalization of MIC. The basis in MIC are
typically positive definite inverse covariance matrices, while
we do not have this restriction in SCGMM; in SGMM the
means and weights are represented in a shared subspace, and
covariances are shared among all states and better modeled
with full covariances. [2] presented a complete and explicit
formula for efficient optimization of SPAM basis and coeffi-
cients, and showed that SPAM gave better results than diago-
nal models and close to performance of smoothed full covari-
ance models on a 80-hour large vocabulary training data.

Yet another approach to creating compact full covariance
representations is to share covariances across several gaus-
sians. Parameter estimation for tied full covariance models is
described in [26].

With limited training data, over-training would be a con-
cern for full covariance models. In [4] a diagonal covariance
smoothing prior was used to smooth off-diagonal elements in
the full covariances as suggested in [2]. An effective analytic
approach was presented to estimate the shrinkage weight pa-
rameter directly from the data and this was shown to have bet-
ter results than the diagonal models. In [14] sparse inverse co-
variance matrices were used to address the limited data prob-
lem. When the training data is only a couple of hours then
sparse inverse covariances have better results than the full co-
variances. However, the focus of our work is on really large
amount of training data and on comparing the full covariance
model with state of the art diagonal covariance models con-
taining hundreds of thousands Gaussians. This is in contrast
with most of the full-covariance work that we are aware of
where training corpora and models of modest sizes are used.

5. CONCLUSIONS AND DISCUSSIONS

In this paper we present a successful recipe of discrimi-
natively training a subspace constrained Gaussian mixture
model that retains the performance of discriminative trained
full-covariance model, while reducing the size of the full-
covariance model to the size of the diagonal-covariance
model. We show that even with the large training data and
the large size of the diagonal-covariance model, this recipe
brings about 5% relative improvement over the large diagonal
model. We have not looked into comparing the computational
cost of SCGMM with that of the diagonal model.
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