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ABSTRACT

We present a new discriminative feature transform approach to large

vocabulary continuous speech recognition (LVCSR) using Gaussian

mixture density hidden Markov models (GMM-HMMs) for acous-

tic modeling. The feature transform is formulated with a set of

context-expanded region-dependent linear transforms (RDLTs) uti-

lizing both long-span features and contextual weight expansion. The

RDLTs are estimated by lattice-free, tied-state based discriminative

training using maximum mutual information (MMI) criterion, while

the GMM-HMMs are trained by conventional lattice-based, boost-

ed MMI training. Compared with two baseline systems, which use

RDLTs with either long-span features or weight expansion only and

are trained using the conventional lattice-based discriminative train-

ing for both RDLTs and HMMs, the proposed approach achieves a

relative word error rate reduction of 10% and 6% respectively on

Switchboard-1 conversational telephone speech transcription task.

Index Terms— region-dependent linear transform, maximum

mutual information, discriminative training, tied-state, HMM

1. INTRODUCTION

In the past decade, several discriminatively trained feature transform

approaches have been successfully used in large vocabulary contin-

uous speech recognition (LVCSR) systems using Gaussian mixture

density hidden Markov models (GMM-HMMs) for acoustic model-

ing. Among them, feature-space minimum phone error (fMPE) [1,2]

and region-dependent linear transform (RDLT) [3, 4] are two most

popular methods. The fMPE method transforms each input feature

vector by using a bias term projected from a high-dimensional s-

pace and uses weight expansion (WE) to incorporate contextual in-

formation (a.k.a. acoustic context expansion in [1, 2], which cal-

culates several averaged posterior probability vectors from neigh-

boring frames using a Gaussian codebook to derive the weights in

fMPE). The RDLT method applies, on a long-span input feature vec-

tor, a weighted-sum of a set of linear transforms, with each transfor-

m corresponding to a “region” in the original feature space. Here-

inafter, we call this RDLT approach the feature expansion based

RDLT (FE-RDLT). Recently, another variant of RDLT was proposed

[5, 6], which uses the same contextual weight expansion method as

in fMPE and a full linear transform on a single frame of input feature

vector. Hereinafter, we call this RDLT approach the weight expan-

sion based RDLT (WE-RDLT). Our comparative study of the above

three discriminatively trained feature transform approaches in [7]

suggests that WE-RDLT and fMPE achieve similar, but better recog-

nition accuracies than that of FE-RDLT approach, yet WE-RDLT is
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computationally more efficient than fMPE at run-time because less

number of regions can be used in WE-RDLT than in fMPE to achieve

similar recognition accuracy. In this paper, we generalize the above

methods by using a set of context-expanded RDLTs utilizing both

long-span features and contextual weight expansion, therefore we

refer to this new feature transform as CE-RDLT hereinafter. The

first motivation of this study is to investigate the effectiveness of

CE-RDLT.

Recently, acoustic modeling with deep neural network based H-

MMs (DNN-HMMs) has been demonstrated to achieve significant

word error rate (WER) reduction against the state-of-the-art GMM-

HMM based systems for different LVCSR tasks and from several re-

search groups (e.g., [8–12]). In addition to using long-span features

as the input of the DNN and nonlinear feature mapping by sever-

al layers of feed-forward neural networks, an important difference

between most of the DNN-HMM based systems and the conven-

tional GMM-HMM based systems is that the former are trained by

using lattice-free discriminative training (DT) for isolated tied-state

classification, while the later are typically trained by using lattice-

based DT for sequence classification. The only exception is the work

done by IBM researchers, where a lattice-based DT for tied-state se-

quence classification is used to train shallow neural network based

HMMs [13] and then DNN-HMMs [11], with additional WER re-

duction achieved against the DNN-HMMs trained using lattice-free,

tied-state based DT. To the best of our knowledge, there is no s-

tudy reported in the literature yet to compare the effectiveness of the

above two different ways of training feature transforms and HMMs

in GMM-HMM based acoustic modeling framework. So the second

motivation of this paper is to share our research findings regarding

this aspect. Interestingly, a lattice-free training approach was used

recently to train a log-linear model for LVCSR [14], but their work

is completely different from ours presented in this paper.

The rest of this paper is organized as follows. In Section 2, we

describe our CE-RDLT transform. In Sections 3 and 4, a lattice-free,

tied-state based MMI criterion and the corresponding optimization

method for training transform parameters are presented, respectively.

Experimental results and analysis are reported in Section 5. Finally,

we conclude the paper in Section 6.

2. CONTEXT-EXPANDED REGION-DEPENDENT

FEATURE TRANSFORM

Our CE-RDLT method transforms the feature vector ot in the origi-

nal feature space to ôt in a new feature space as follows:

ôt =
M
∑

m=1

κm,t ·Wmξt , (1)
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where κm,t is the weight of the mth transform Wm at time t, and ξt
is a long-span feature vector [3,4] obtained by concatenating several

neighboring frames of feature vectors around ot, i.e.,

ξt =
[

1 o
⊤

t−L . . .o
⊤

t . . .o
⊤

t+L

]⊤
. (2)

In the above equation, L determines the length of the context win-

dow, and the first element “1” is used to incorporate a bias term into

the feature transform.

The transform weight κm,t’s are calculated by following the so-

called “acoustic context expansion” method in fMPE [1, 2] as fol-

lows:

1. A codebook consisting of Ng Gaussian components is gen-

erated by clustering all the Gaussian mixture components in

a GMM-HMM acoustic model trained typically using maxi-

mum likelihood (ML) criterion;

2. For each frame ot, an Ng-dimensional vector of posterior

probabilities is computed using the above Gaussian code-

book;

3. Suppose the current frame is at position 0, get 3 Ng-

dimensional vectors by averaging the posterior probability

vectors at position 1-2, 3-5 and 6-9 on the right and likewise

another 3 averaged vectors on the left;

4. Concatenate the 7 Ng-dimensional averaged posterior proba-

bility vectors (3 on the left, 1 from the current frame, and 3

on the right) to form the final high-dimensional weight vector

κt with κm,t being its mth element.

Consequently, the total number of linear transforms in our CE-RDLT

transform is M = 7×Ng .

As discussed in the introduction section, conventional feature

transforms such as fMPE, FE-RDLT and WE-RDLT can be treated

as the special cases of CE-RDLT in Eq. (1). These methods differ

from each other in following three aspects: 1) whether use bias only

or full linear transform; 2) whether use long-span features as trans-

form input or not, and 3) whether use contextual weight expansion

or not.

3. TIED-STATE BASED MAXIMUM MUTUAL

INFORMATION CRITERION

fMPE and conventional RDLT methods use the minimum phone er-

ror (MPE) criterion to train the transform parameters discriminative-

ly. The MPE criterion approximates the expected training set phone

accuracy, therefore needs to use word lattices decoded for each of

the training utterances. To achieve the best performance, usually a

weakened (typically uni-gram) language model should be used. So

the decoded lattices are in general dense, which cause significant

storage and loading overhead, especially when large-scale training

data is used. The use of a language model during training also intro-

duces task-dependent tuning factors and heuristics such as language

model scaling, insertion penalty, and acoustic scaling. These param-

eters need be tuned for each application task.

In this study, the MMI criterion [15] is adopted to train transform

parameters. The decision-tree based tied states of tri-phone HMMs

are used as basic units in discriminative training. The MMI criterion

can then be formulated as

F(W) =
∑

t

log p(srt |ôt) =
∑

t

log
p(ôt|s

r
t )p(s

r
t )

∑

s

p(ôt|s)p(s)
, (3)

where W = {Wm|m = 1, . . . ,M} is the set of CE-RDLT trans-

forms to be trained. In Eq. (3), srt is the reference state at time

t, which is determined by performing forced-alignment using the

ground truth transcription of the training utterances; ôt is the trans-

formed feature vector at time t, which is a function of W; p(s) is

the prior probability of each tied-state, which can be estimated con-

veniently from the forced-alignment results on the whole training

set. In principle, the summation term in the denominator should take

all tied-states into account. In practice, however, a short n-best s-

tate list can be computed beforehand for each time t to reduce the

training cost.

Using the tied-state based MMI criterion, it is unnecessary to de-

code, store, and load word lattices before discriminative training can

be performed, therefore the training tool can be made very scalable.

Furthermore, there is no trouble to set those tuning parameters (e.g.

acoustic and language model scaling) which are essential in conven-

tional lattice based methods. Because the trained transform parame-

ters are less dependent on (or sensitive to) the language model, they

could work better than the ones trained by conventional lattice based

discriminative training when deployed in application tasks different

from the training task.

4. PARAMETER OPTIMIZATION

The transform parameters are optimized by a batch-mode resilient

backpropagation (Rprop) algorithm [16] (specifically the iRprop−

algorithm described in [17]) because of its capability to adjust per-

parameter learning step sizes adaptively through iterations.

The derivatives needed for optimizing W are similar to the ones

in fMPE, except they are calculated with respect to full transform

parameters instead of bias only. Using Eq. (1), it is straightforward

to get
∂F

∂w
ij
m

=
∑

t

∂Ft

∂ôit
· κm,tξ

j
t , (4)

where i and j are row and column indices, respectively. The no-

tion of direct and indirect derivatives defined in fMPE [1] is also

borrowed in this study, i.e.,

∂Ft

∂ôit
=

∂Fdirect
t

∂ôit
+

∂F indirect
t

∂ôit
. (5)

Therefore, the derivative calculated in Eq. (4) can then be fed into

the Rprop optimizer to update the learning step sizes, which are used

to update the corresponding transform parameters accordingly.

Although a fixed global initial learning step size for all transfor-

m parameters can be used in Rprop, it is usually more efficient to

set more informative, per-parameter initial learning step sizes. This

is done in the first iteration as follows. Firstly, the derivatives are

accumulated separately into positive and negative parts:

pijm =
∑

t
max

(

∂Ft

∂ôi
t

· κm,tξ
j
t , 0

)

,

nij
m =

∑

t
min

(

∂Ft

∂ôi
t

· κm,tξ
j
t , 0

)

.
(6)

Secondly, the per-parameter initial learning step sizes are defined as

δ
ij
m =

ρ

p
ij
m − n

ij
m

· (pijm + n
ij
m), (7)

where ρ is determined by using a first-order approximation of the

criterion improvement: Suppose there are T frames of training da-

ta and the expected per-frame criterion improvement after the first
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Table 1. Comparison of WERs (relative WER reductions) (both

in %) of several feature transform methods by using convention-

al lattice-based discriminative training while GMM-HMMs are ML

trained. The WER of the ML-trained baseline system is 26.5%.

fMPE FE-RDLT WE-RDLT CE-RDLT

23.4 (11.7) 23.8 (10.2) 23.2 (12.5) 23.0 (13.2)

iteration is ∆, ρ is calculated by solving

1

T

∑

m

∑

i

∑

j

ρ

p
ij
m − n

ij
m

· (pijm + n
ij
m)2 = ∆. (8)

Following this method, ∆ is the only control parameter that

needs be set manually. A semi-automatic process is introduced to

help determine it as follows:

• The transform parameters are updated in the first iteration us-

ing an initial guess of the expected criterion improvement ∆,

and the actual criterion improvement is then evaluated in the

second iteration;

• If the actual improvement is much larger than expected, ∆
can be increased to enlarge the learning step sizes; Otherwise,

if the actual improvement is significantly less than ∆ or even

being negative, ∆ should be decreased accordingly. In both

cases, training should start over from the first iteration until a

good ∆ is found.

Note that this semi-automatic method is only necessary when

initializing the Rprop optimizer for the first iteration. The learning

step sizes are adjusted adaptively and fully automatically in succeed-

ing iterations.

5. EXPERIMENTS AND RESULTS

Switchboard-1 conversational telephone speech transcription task

[18] was used in our experiments. We used 4,870 sides of conversa-

tions (about 300 hours of speech) from 520 speakers in training, and

40 sides of conversations (about 2 hours of speech) from the 2000

Hub5 evaluation (Eval2000) for testing.

For front-end feature extraction, the baseline system used 13-

dimensional PLP features with windowed mean and variance nor-

malization, and up to third-order delta features were used to form

the raw 52-dimensional input feature vectors. A (39 × 52) HL-

DA [19] transform was estimated to reduce the feature dimension.

For acoustic modeling, we used phonetic decision-tree based tied-

state triphone GMM-HMMs with 9,304 states and 40 Gaussian

components per state. A speaker-independent baseline GMM-HMM

set was trained by ML criterion and used to perform the forced-

alignment of each training utterance to generate the set of training

feature vectors for each tied state. For each frame of training data,

an n-best state list containing 1,000 most probable states is gener-

ated to speed up tied-state based RDLT training. Our recognition

vocabulary contained 22,641 unique words. The pronunciation lex-

icon contained multiple pronunciations per word with a total of

28,649 unique pronunciations. A trigram language model trained on

the transcription of the Switchboard-1 training data and broadcast

news data was used in decoding. Recognition experiments were

performed with a Microsoft in-house decoder and the results were

evaluated by using the NIST Scoring Toolkit SCTK [20].

All the RDLT methods used a 1,000-component GMM got by

clustering the ML-trained GMM-HMM set to calculate the high-

dimensional posterior probability vectors. The raw 52-dimensional
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Fig. 1. MMI criterion improvement on the training set.
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Fig. 2. State accuracy improvement on the training set.

feature vector was used as the transform input. If long-span fea-

tures were used, 11 frames including the current frame plus 5 pre-

ceding and 5 succeeding frames were concatenated, therefore 1,000

(39 × 573) RDLTs were trained. If contextual weight expansion

was used, the posterior probability vectors were averaged and aug-

mented exactly as in fMPE, so 7,000 (39 × 53) RDLTs would be

trained. Similarly, if both long-span features and weight expansion

were used, there would be 7,000 (39 × 573) RDLTs. In all cas-

es, the HLDA transform used in the baseline GMM-HMM set was

borrowed to initialize the RDLTs.

5.1. Comparison of feature transform methods using lattice-

based discriminative training

The WER using the ML-trained baseline GMM-HMM set was

26.5% on the Eval2000 set. Table 1 compares the recognition perfor-

mances of several feature transform methods using the conventional

word-lattice based discriminative training, while the GMM-HMMs

are ML-trained. The number of “regions” used for fMPE had been

increased to 50,000 for better performance. This also made fMPE

having similar number of transform parameters (13.7 million) as that

of WE-RDLT method (14.5 million), and slightly less than that of

FE-RDLT method (22.3 million). For our CE-RDLT method, there

were 156.4 million free parameters.

It is observed that FE-RDLT using only long-span features per-

forms slightly worse than fMPE and WE-RDLT using contextual

weight expansion only. Our proposed CE-RDLT using both long-

span features and contextual weight expansion performs the best

with increased number of transform parameters. Compared with

fMPE, RDLT-based methods are more efficient in run-time because

much less Gaussian components need be evaluated for calculating
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Table 3. Comparison of WERs (relative WER reductions) (both in %) of several feature transform methods by lattice-based or tied-state

based discriminative training while GMM-HMMs are trained with lattice-based BMMI training. The ML-trained baseline system has a WER

of 26.5%.
Discriminative fMPE FE-RDLT WE-RDLT CE-RDLT

Feature Transform Lattice Lattice Tied-State Lattice Tied-State Lattice Tied-State

+BMMI HMM Training 22.6 (14.7) 22.8 (14.0) 21.5 (18.9) 21.9 (17.4) 21.3 (19.6) 21.8 (17.7) 20.6 (22.3)

Table 2. Comparison of WERs (relative WER reductions) (both in

%) of three RDLT-based methods by tied-state based discriminative

training while GMM-HMMs are ML trained. The WER of the ML-

trained baseline system is 26.5%.

FE-RDLT WE-RDLT CE-RDLT

23.7 (10.6) 23.2 (12.5) 22.0 (17.0)

the posterior probability vectors.

5.2. Comparison of RDLT-based methods using tied-state based

discriminative training

Three RDLT-based methods were compared by using tied-state

based MMI training. 50 Rprop iterations were performed for each

setup to train the RDLT transforms. The expected criterion improve-

ment was set to 0.3 for initializing the Rprop learning step sizes. The

value of the MMI objective function and tied-state classification ac-

curacy on the training set were monitored and shown in Figs. 1 and

2. It is observed that the FE-RDLT method using long-span features

performs the worst. It increases the training set state accuracy from

40.5% to 50.0%. With slightly less number of transform parameters,

the WE-RDLT method using contextual weight expansion performs

much better than FE-RDLT. Again, the proposed CE-RDLT method

achieves the best performance, which achieves a training set state

accuracy of 60.7%.

Table 2 compares the testing set WERs of the three RDLT-based

methods by tied-state based discriminative training, while GMM-

HMMs are ML trained. The FE-RDLT method performs the worst,

the WE-RDLT method performs slightly better, and the proposed

CE-RDLT method performs the best with a significant margin. By

comparing these numbers with the corresponding ones in Table 1,

RDLT-based methods by tied-state discriminative training outper-

form the ones by conventional lattice-based discriminative training.

This is especially true for the CE-RDLT method. Apparently, it is

helpful to use both long-span features and contextual weight expan-

sion to increase the degree of freedom of RDLTs, which can be lever-

aged effectively by using tied-states as the training target. This ob-

servation is consistent with what was observed in DNN-HMM based

acoustic modeling (e.g., [8–12]).

It is also interesting to compare the tied-state based RDLT meth-

ods with a DNN trained by our colleagues on the same task and same

setup [9]. The DNN achieves a similar state classification accuracy

on the training set (∼60%), but much better WER (∼17.1%) on the

testing set. Further study is needed to investigate why DNN-HMM

seems to generalize much better than GMM-HMM in this case.

5.3. Feature transform combined with discriminative training

of GMM-HMMs

In addition to RDLTs, GMM-HMM parameters can also be trained

by using the same tied-state based MMI criterion. Starting from the

above CE-RDLTs trained, 10 iterations of extended Baum-Welch (E-

B) optimization [21, 22] were performed to train the GMM-HMM

parameters. The training set MMI criterion and tied-state classifi-

cation accuracy were further increased to -1.5 and 63.1%, respec-

tively. However, such an improvement failed to translate into W-

ER reduction on the Eval2000 set: the WER remains 22.0%. This

seems consistent with the results reported in [23], where a so-called

“frame discrimination” (FD) method was used, and no performance

gain against their ML-trained baseline system was observed either,

although the FD criterion had been improved.

Then we evaluated the performances of all the above RDLT vari-

ants by combining them with the conventional word-lattice based

discriminative GMM-HMM training. The boosted MMI (BMMI)

criterion [24] was used in this case. Given the superior performance

of WE-RDLT and CE-RDLT against fMPE, we did not conduct ex-

periments on tied-state based DT for fMPE. Therefore only fMPE

using lattice-based DT training was combined with BMMI GMM-

HMM training, which is actually the method adopted in many state-

of-the-art LVCSR systems. The results of this set of experiments

are summarized and compared in Table 3. Several observations can

be made. Firstly, by combining with the lattice-based BMMI train-

ing of GMM-HMMs, system performance can be improved further

against the ML-trained GMM-HMMs using all the discriminative

feature transform methods we studied. Secondly, for all the RDLT-

based methods, transforms trained with tied-state based DT outper-

forms the lattice-based DT. Thirdly, the proposed CE-RDLT method

with tied-state based DT plus word-lattice based BMMI training of

GMM-HMMs achieves the best WER, which represents a relative

WER reduction of about 10%, 6%, and 9% against three state-of-

the-art methods, namely FE-RDLT(lattice), WE-RDLT(lattice), and

fMPE(lattice), respectively.

6. CONCLUSION AND DISCUSSION

Based on the above results, we draw the following conclusions:

• Both the long-span features and the contextual weight ex-

pansion are helpful in the proposed context-expanded RDLT

(CE-RDLT) feature transform;

• The best practice is to train the feature-space CE-RDLTs by

using lattice-free, tied-state based discriminative training,

while model-space GMM-HMMs are trained by using a con-

ventional word-lattice based discriminative training method.

Interestingly, as demonstrated in [11], DNN-HMMs trained by

a lattice-based discriminative training method can achieve better

recognition accuracy than the DNN-HMMs trained by tied-state

based discriminative training. Based on our research findings in this

study, we are just wondering whether an additional gain could be

achieved if the output (softmax) layer of the DNN was trained by

lattice-based discriminative training, while other layers of the DNN

was trained by lattice-free tied-state based discriminative training.

This is our future work and we will report the results elsewhere once

they become available.
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