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ABSTRACT

Automatic speech recognition in the presence of non-stationary in-
terference and reverberation remains a challenging problem. The
2nd ‘CHiME’ Speech Separation and Recognition Challenge intro-
duces a new and difficult task with time-varying reverberation and
non-stationary interference including natural background speech,
home noises, or music. This paper establishes baselines using
state-of-the-art ASR techniques such as discriminative training and
various feature transformation on the middle-vocabulary sub-task
of this challenge. In addition, we propose an augmented discrim-
inative feature transformation that introduces arbitrary features to
a discriminative feature transformation. We present experimental
results showing that discriminative training of model parameters and
feature transforms is highly effective for this task, and that the aug-
mented feature transformation provides some preliminary benefits.
The training code will be released as an advanced ASR baseline.

Index Terms— Discriminative training, Feature transforma-
tion, Augmented discriminative feature transformation, CHiME
challenge, Kaldi

1. INTRODUCTION

Recent advances in Automatic Speech Recognition (ASR) [1], have
greatly improved the accuracy of speech recognition systems. Over
the past ten years model training techniques have migrated from
Maximum Likelihood (ML) estimation to discriminative training [2,
3, 4, 5, 6]. In addition, various types of feature transformations have
been proposed and showed effectiveness [7, 8, 9, 10, 11, 12]. Al-
though it is well known that the state-of-the-art ASR techniques are
very effective in relatively clean speech conditions, we need further
investigation of their effectiveness in challenging conditions such
as environmental reverberation and noise. Both reverberation and
noise can degrade recognition performance, and this has been a lim-
iting factor in the expansion of speech recognition scenarios beyond
close-talking microphones. It is well known that the acoustic scores
become less reliable in noisy and reverberant conditions since acous-
tic feature patterns are corrupted. However, discriminative training
generally optimizes the parameters to maximize the difference of
scores between correct and incorrect word/phoneme sequences to
reduce the confusability.

This paper aims to test these techniques in a challenging noisy
speech recognition task. In particular, we focus on discriminative
training and feature transformations for this problem. This paper
also deals with several feature transformation approaches, which
convert original features to new features based on linear transfor-
mations (Linear Discriminant Analysis (LDA) [7], Maximum Likeli-

hood Linear Transformation (MLLT) [8, 9], Speaker Adaptive Train-
ing (SAT) [10], and discriminative non-linear feature transformation
[11, 13, 14, 15, 16]).

In AURORA2 experiments, combination of LDA and MLLT im-
prove the recognition accuracy [17]. LDA uses long context by con-
text expansion (e.g., contiguous 9 frames) to exploit dynamic fea-
tures, which reduces the influence of non-stationary noises. MLLT
finds a linear transformation of features to reduce state-conditional
feature correlations. SAT and Maximum Likelihood Linear Regres-
sion (MLLR) improve the recognition accuracy by adapting to un-
known and changing noise conditions.

Discriminative non-linear feature transformations can provide
yet further gains in performance, because the transformation is op-
timized to reduce the error rate in the context of the decoder (e.g.,
[18]). Some of the popular non-linear transforms provide an ap-
proximately piece-wise linear transform by the inclusion of “region-
based” features based on Gaussian posterior probabilities. We pro-
pose to extend this basic approach by augmenting the set of region-
based features to include additional non-linear features that may be
relevant in noisy conditions.

There are three objectives in this paper. The first is to validate
the effectiveness of the discriminative training and feature transfor-
mation for reverberated and noisy speech to answer how these tech-
niques improve the recognition accuracy. We evaluate the perfor-
mance improvement by these techniques using 2nd CHiME chal-
lenge Track 2, which is designed to evaluate the “word error rate”
under reverberated and non-stationary noisy environments [19] and
matches our interests. The 2nd is to build the CHiME challenge’s
baseline using public tools. We use a Kaldi toolkit [20] as an ad-
vanced ASR back end of CHiME baseline to a HTK [21] based ML
baseline attached to CHiME. Participants in the CHiME challenge
are not necessarily experts on the speech recognition, hence to make
the baseline including various techniques helps their research. This
baseline will be distributed for participants. The third is to experi-
ment with alternative features in the discriminative feature transfor-
mation, which we call augmented discriminative feature transforma-
tion.

2. DISCRIMINATIVE TRAINING AND FEATURE
TRANSFORMATION

2.1. Discriminative training

Discriminative training is a supervised learning principle that min-
imizes error in modeling labels and recognition results. Although
there are several training methods available [2], this paper focuses
primarily on the Maximum Mutual Information (MMI). In MMI, the
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objective function is given as

FMMI(λ) =

R∑
r=1

log
pλ ({xt}r|Hsr )

κ pL(sr)∑
s pλ ({xt}r|Hs)

κ pL(s)
, (1)

where R is the number of training utterances and {xt}r is the rth

utterance features sequence. The acoustic model parameters λ are
optimized by the extended Baum-Welch. r is the index of the train-
ing utterance. Hsr and Hs are the HMM sequences of a correct
label sr and a recognition result s, respectively. pλ is the likelihood
of an acoustic model, κ is the acoustic scale, and pL is the likelihood
of a language model.

Utterances that contain many errors need to be considered inten-
sively and evaluating phoneme accuracies (i.e., evaluating margins
[6]) improves performance. In the boosted MMI (bMMI) [22], the
standard MMI objective function is modified to include a term that
“boosts” the effect of hypotheses with low phoneme accuracy:

FbMMI(λ) =
R∑

r=1

log
pλ ({xt}r|Hsr )

κ pL(sr)∑
s pλ ({xt}r|Hs)

κ pL(s)e−bA(s,sr)
, (2)

where A(s, sr) is the phoneme accuracy of s for a reference sr , and
b (> 0) controls the strength of its effect. In this paper, we compare
the performance of MMI and bMMI to that of ML.

2.2. Discriminative feature transformation

In addition to discriminative training, feature transformation based
on the discriminative training criterion can be used [11]. This
method estimates a matrix M that projects from high-dimensional
non-linear features to low-dimensional transformed features, as
shown in Eq. (3):

yt = xt +Mht, (3)

where xt, are the K-dimensional original features, ht are L-
dimensional nonlinear features, and yt are the transformed fea-
tures. Matrix M’s dimension is K × L. In this study, we validate
the effectiveness of feature-space MMI (f-MMI) and its extension,
feature-space boosted MMI (f-bMMI). In both of these, the features
are constructed in the same way, but the objective function for train-
ing is different. After substituting y of Eq. (3) for x into Eqs. (1)
and (2), we obtain the objective function for f-MMI:

Ff-MMI(M) =
R∑

r=1

log
pλ ({yt}r|Hsr )

κ pL(sr)∑
s pλ ({yt}r|Hs)

κ pL(s)
. (4)

Differentiating the objective function F by M as

∂F
∂M

=
[

∂F
y1

· · · ∂F
yTf

] [
h1 · · · hTf

]T
, (5)

where T denotes the transpose and Tf is the total number of frames
of training data. The f-bMMI objective function is similarly con-
structed. The optimized matrix M is obtained by gradient descent.
To form the features, N components of the Gaussian Mixture Mod-
els (GMM) are obtained by clustering the Gaussians in the initial tri-
phone acoustic models into N components and re-estimating their
parameters. The non-linear features ht [13] are calculated as

ht,n =

[
pt,n

(
xt,1 − µn,1

σn,1

)
, · · · , pt,n

(
xt,K − µn,K

σn,K

)
, αpt,n

]T

,

(6)

where µn,i and σn,i are the mean and variance in dimension i of the
nth Gaussian component. α is the scaling factor. pt,n are Gaussian
component posteriors computed for each frame, approximated such
that all but the Q-best posteriors are set to zero. This approximation
is done in order to reduce computational cost by ensuring that ht is
sparse.

2.3. Augmented discriminative feature transformation

In f-MMI, the high-dimensional sparse features ht in Eq. (3) rep-
resent the likelihood and posterior information. These features are
similar to those of MFCC. It is most effective to use different types of
features for noisy speech recognition, such as the tandem approach
[23]. We propose a method that obtains new transformed features y′

t

by adding features h′
t to ht as

y′
t = xt +

[
MM′] [ ht

h′
t

]
(7)

= xt +Mht +M′h′
t. (8)

Thus, the auxiliary feature is an additional bias term in the transfor-
mation. The objective function is given as

Faf-MMI

([
MM′]) =

R∑
r=1

log
pλ ({y′

t}r|Hsr )
κ
pL(sr)∑

s pλ ({y′
t}r|Hs)

κ pL(s)
. (9)

The concatenated matrices M and M′ are optimized through the
above-described process. An advantage of this approach is that vari-
ous features can be taken into account, such as the sparse vectors of
dictionary learning [24], the posteriors of likelihood ratio test-based
voice activity detection [25] or binary mask vectors [26]. By inte-
grating features related to speech enhancement into the discrimina-
tive feature transformation framework, we hope to overcome some
of the short-comings of feature-based noise compensation methods.

3. EXPERIMENTAL SETUP

We validated the effectiveness of discriminative training and fea-
ture transformation for reverberated and noisy speech on the 2nd

CHiME challenge. Additionally, our proposed “augmented discrim-
inative feature transformation” was validated. CHiME consists of
a small vocabulary task (Track 1) and a medium vocabulary task
(Track 2). This paper focused on Track 2, whose utterances were
taken from Wall Street Journal database (WSJ0). For natural speech
recognition, medium vocabulary tasks are needed in addition to
conventional small vocabulary (command-like) tasks. The training
data set (si tr s) contains 7138 utterances from 83 speakers (si84),
the evaluation data set (si et 05) contains 330 utterances from 12
speakers (Nov’92), and the development set (si dt 05) contains 409
utterances from 10 speakers. Acoustic models were trained using
si tr s and tuned using si dt 05. The language model size was 5 k
(basic). These data simulate two types of realistic environments.
There are two types of data: “reverberated,” data made by convolv-
ing clean speech with impulse responses recorded at 2 m distant
microphones, and “noisy” data made by adding noises to “reverber-
ated” at SNR = {−6,−3, 0, 3, 6, 9}dB. Noises are non-stationary
such as other speakers’ utterances, home noises, or music. In this
study the “isolated” noisy data was used, in which the noisy signal is
about the same length as the speech, as opposed to the “embedded”
noisy data, in which the noisy signal is longer than the speech. The
“isolated” condition is similar to having good voice activity detec-
tion. Although the database provides two channels of data, in this
paper, we only used the left channel data.
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We describe the settings of acoustic feature and feature trans-
formation. The baseline acoustic features are MFCC and PLP (1-13
order MFCCs (PLPs) + ∆ + ∆∆). It is well known that under cer-
tain assumptions linear discriminative analysis (LDA) transforms the
features so that the classes are well separated. After concatenating
the first 13 static MFCCs in nine contiguous frames, a total of 117
dimensional features are compressed into 40 dimensions by an LDA
performed using classes identified by tri-phone HMM state align-
ments (2,500 states). Because the acoustic features are high dimen-
sional, it is difficult to use full-covariance models (which consider
correlations between dimensions), and, instead, diagonal-covariance
models are widely used. This limitation can degrade the model’s
performance. Thus, there are several methods for transforming a fea-
ture space so the state-conditional covariances of the features. One
such widely used transformation method is MLLT. Another chal-
lenge for modeling is the large variation among speakers. To address
this problem, SAT is typically used. In SAT, training is conducted
after adaptation, which transforms the input space into a canonical
space so as to reduce the variance across speakers. In this study, we
validated the effectiveness of LDA, MLLT, and SAT.

In discriminative feature transformation (section 2.2), N = 400
components in GMM were used and offset features were calculated
for each MFCC dimension (a total 40 dimensions) with context ex-
pansion (9 frames). Feature ht’s dimension was 400× 40× 9, and
features at the top Q = 2 posteriors were selected and all other fea-
tures were ignored. α was set to 5.

We summarize the experimental procedure based on the above
setup as follows: First, a clean acoustic model was trained. The
number of mono-phones was 40, including silence (“sil”). The tri-
phone model had 2,500 states, and the total number of Gaussians
was 15,000. Second, using their alignments and tri-phone tree struc-
tures, reverberated acoustic models were trained using the “rever-
berated” dataset. Third, noisy acoustic models were trained multi-
conditionally using the “isolated” noisy dataset without any special
pre-processing such as blind source separation. Finally, starting with
this ML model, performed discriminative training and feature trans-
formation for the “isolated” noisy dataset. The parameters used in
our experiments were based on those in the WSJ tutorial included in
the Kaldi toolkit.

4. RESULTS AND DISCUSSION

4.1. Clean speech (WSJ0)

We evaluated the Word Error Rate (WER) for clean speech (si et 05),
which is a baseline model for the following experiments. The WER
of the tri-phone model is listed in Table 1. The bMMI discriminative
training improves the WER relative to non-boosted training. The
feature-based discriminative training further improves the result.
LDA with MLLT improves the WER by 0.2% overall. The addition
of SAT improves the WER by 1% overall.

4.2. Reverberated and noisy speech (CHiME)

4.2.1. Baseline

Starting from the initial tri-phone model trained on clean data, we
retrained using reverberated and noisy data. Reverberation and noise
causes errors in the alignment and reconstruction of tree structures.
We consider whether alignment (A) and tree structures (T) are re-
trained on noisy data (y) versus the same to those of clean model (n).
This generates three new conditions: (A=n,T=n), (A=y,T=n), and

Table 1. WER[%] for clean speech (si et 05) (tri-phone model,
2,500 states, 15,000 Gaussians).

none LDA+MLLT LDA+MLLT+SAT
ML 5.34 5.10 4.15

MMI 4.91 4.58 3.44
bMMI 4.73 4.30 3.38
f-MMI 4.71 4.26 3.40
f-bMMI 4.35 4.02 2.90

(A=y,T=y). The WER results in the rest of the paper are on the devel-
opment set (si dt 05). For the “reverberated” case, the WER of the
tri-phone models (ML) are 12.69% (A=n,T=n), 12.05% (A=y,T=n),
12.35% (A=y,T=y). Using an alignment by the (A=y,T=n) model,
which achieved the best performance, we retrained models on the
“isolated” noisy dataset. The averages of these ML models are
56.29% (A=n,T=n), 56.37% (A=y,T=n), and 56.98% (A=y,T=y).
The performance of the (A=y,T=y) model is inferior to that of the
other models. The performance of (A=n,T=n) and (A=y,T=n) are
almost equivalent; we use the (A=y,T=n) condition as a baseline
model. Discriminative training and feature transformation were car-
ried out starting with this model. The baseline ML model was also
used to generate lattices used for the denominator of the discrimina-
tive objective function.

4.2.2. PLP results

For the ML model, experiments using the PLP features were also
performed. For clean speech, the WER of PLP is 5.38% , which is
equivalent to that of MFCC (5.34%). For the “reverberated” case,
the WER of PLP is 13.87% (A=y,T=n), which is worse than that of
MFCC (12.05%). For the “isolated” noisy case, the average WER of
PLP (A=y,T=n) is 57.35%, which is still worse than that of MFCC
(56.37%). Although PLP is thought to be robust to noisy speech,
these experiments show a possible weakness of PLP when handling
reverberated speech.

4.2.3. Discriminative training

First, with regard to the MFCC features, the improvement of the
WER by discriminative training from the ML baseline is shown in
Table 2. Evidently discriminative training is better able to compen-
sate for noise than ML training, even in scenarios such as this where
the background noise is highly variable. The boosted model im-
proves the WER by 1% relative to the non-boosted one, whereas the
feature space technique improves the WER by 3% overall. We be-
lieve that the feature space is adapted for a target speaker to improve
the WER and that this effect reduces the influence of other noises. In
these tables, the boosting factor b is set to 0.1. In preliminary exper-
iments, boosting factors were set to 0.05, 0.1, 0.2, and 0.5. Perfor-
mance did not strongly depend on the boosting factors and that the
optimized values of the boosting factor are approximately 0.1-0.2.

4.2.4. Feature transformation

In these experiments, the MFCC features were first transformed us-
ing LDA and MLLT. Table 3 shows the WER.As mentioned in the in-
troduction, LDA and MLLT improve the model performance in ordi-
nary noise conditions. These significant improvements may relate to
the characteristics of the CHiME database. The CHiME database’s
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Table 2. WER[%] for isolated noisy speech (si dt 05) (tri-phone
model, discriminative training with MFCC features).

−6dB −3dB 0dB 3dB 6dB 9dB Avg.
ML 74.20 66.57 58.24 51.84 46.73 40.64 56.37

MMI 73.40 65.60 56.88 51.17 45.40 41.20 55.61
bMMI 72.78 64.71 55.69 50.83 44.00 40.27 54.71
f-MMI 69.94 62.50 54.51 48.74 42.73 38.34 52.79
f-bMMI 68.64 61.56 53.11 47.65 41.73 36.98 51.61

Table 3. WER[%] for isolated noisy speech (si dt 05) (tri-phone
model, discriminative training with MFCC+LDA+MLLT features).

−6dB −3dB 0dB 3dB 6dB 9dB Avg.
ML 70.95 62.62 53.98 47.37 40.27 34.84 51.67

MMI 68.55 61.12 53.41 46.32 39.52 34.30 50.54
bMMI 68.74 60.98 51.95 45.86 38.16 32.85 49.76
f-MMI 66.19 58.24 49.23 43.58 36.89 31.35 47.58
f-bMMI 66.65 57.46 48.25 42.99 35.71 31.07 47.02

noises includes interfering speech from other speakers such as chil-
dren. LDA seems to be dealing effectively with this interference
presumably by finding linear transforms that focus on the feature
subspace least occupied by the interference.

It is also effective to use context to reduce the influence of
non-stationary noises. Furthermore, although noises increase
the correlations between MFCC coefficients in each dimension,
MLLT reduces the correlations and improves the WER. Denomi-
nator lattices for discriminative training are re-generated using ML
(MFCC+LDA+MLLT) model.

In another experiment, we added SAT and MLLR to the
LDA+MLLT model as shown in Table 4. In this case, because
the amount of training data is not sufficient, transformation into a
canonical space leads to an increase in the amount of training data
effectively and the estimation accuracy of the acoustic models in-
creases. Additionally, MLLR adaptation for a target speaker reduces
the influence of noises. Denominator lattices for discriminative
training were re-generated using the ML model.

4.2.5. Augmented discriminative feature transformation

Table 5 shows the WER of ML and f-MMI whose auxiliary fea-
tures h′

t in Eq. (7) are static MFCC and PLP (13 dimensions each),
respectively. In the ML model, as mentioned in section 4.2.2, the

Table 4. WER[%] for isolated noisy speech (si dt 05) (tri-phone
model, discriminative training with MFCC+LDA+MLLT+SAT fea-
tures).

−6dB −3dB 0dB 3dB 6dB 9dB Avg.
ML 68.36 58.30 48.80 40.73 35.09 28.54 46.64

MMI 65.13 55.27 45.89 39.64 33.12 27.29 44.39
bMMI 64.60 55.10 45.82 39.05 32.72 26.86 44.03
f-MMI 63.09 52.62 42.44 36.29 31.01 25.52 41.83
f-bMMI 62.43 52.23 42.17 35.31 29.84 24.72 41.12

Table 5. WER[%] for isolated noisy speech (si dt 05) (tri-phone
model, discriminative feature transformation with MFCC (M) and
PLP (P) features).

−6dB −3dB 0dB 3dB 6dB 9dB Avg.
ML(M) 74.20 66.57 58.24 51.84 46.73 40.64 56.37
ML(P) 74.57 67.50 59.76 53.02 47.00 42.23 57.35
f-MMI 69.94 62.50 54.51 48.74 42.73 38.34 52.79
(+M) 70.14 61.54 55.76 48.05 43.49 38.93 52.99
(+P) 69.52 62.31 54.48 48.59 42.94 37.90 52.62

performance of PLP is worse than that of MFCC. However, adding
PLP to the discriminative feature transformation improves the WER,
whereas adding MFCC does not improve the WER, presumably be-
cause of redundancy with the original features xt. On the other hand,
since PLP features are different there can be some benefit to learning
a transform based on them.

4.2.6. Evaluation set

Table 6 shows the WER of the evaluation set using the models tuned
using the development set. The baseline is ML (MFCC), whereas on
top of MFCC+LDA+MLLT+SAT, “Best 1” is ML and “Best 2” is
f-bMMI. As a reference, the HTK based baseline was 55.01% [19].
Both discriminative training and feature transformation (“Best 2”)
achieve 33.22% error reductions relative to the baseline, and thus
appear to be effective for reverberated and noisy speech.

Table 6. WER[%] for isolated noisy speech (si et 05). The baseline
is ML (MFCC), whereas on top of MFCC+LDA+MLLT+SAT, “Best
1” is ML and “Best 2” is feature-space boosted MMI.

−6dB −3dB 0dB 3dB 6dB 9dB Avg.
Baseline 69.79 62.71 55.86 46.89 42.07 37.49 52.47
Best 1 60.83 52.14 43.51 34.28 29.22 23.82 40.63
Best 2 54.70 45.11 35.98 28.64 24.38 21.39 35.04

5. CONCLUSION AND FUTURE WORK

We developed a state-of-the-art baseline for the 2nd ‘CHiME’
Speech Separation and Recognition Challenge. This baseline val-
idated the effectiveness of both discriminative training and feature
transformation on realistic reverberated and noisy environments. We
proposed a framework to add auxiliary features to a discriminative
feature transformation. Experiments show that these techniques,
especially feature transformations, are effective for non-stationary
interference and reverberation. The auxiliary feature approach pro-
vided some promising preliminary improvements. In future work,
we plan to further investigate auxiliary features that reflect im-
portant characteristics of interference and reverberation, including
auxiliary features derived from microphone array signal processing,
for discriminative feature transformation.
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