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ABSTRACT

This paper presents a voice conversion algorithm based on
Hidden Markov Models that does not requires explicit pho-
netic labeling of the input speech. Additionally, the proposed
voice conversion algorithm also uses an excitation estima-
tion algorithm previously presented by the authors to achieve
higher speech quality without compromising speaker identity
conversion. The performance of the proposed algorithm was
compared, using listening tests, with the performance of a re-
cent voice conversion algorithm based on HMM but requir-
ing phonetic labeling. The proposed algorithm was found to
achieve equivalent identity conversion scores while improv-
ing the perceived quality of the converted speech. Thus, the
proposed algorithm was found as a viable alternative for con-
version applications where phonetic labeling is not practical.

Index Terms— Phoneme independent, HMM, voice con-
version, ABX, MOS

1. INTRODUCTION

Speech is a basic communication mean for human beings.
Besides the explicit information, encoded in a particular lan-
guage, that is transmitted everytime a person speaks, there is
a plethora of non-linguistic cues that can be interpreted by
the listeners. In particular, humans are able to associate a
voice with the corresponding speaker. Consequently, there
is an interest on developing methods to manipulate the per-
ceived identity of a given voice without altering any other in-
formation that it may contain. Several practical applications
have been proposed, among them: personalization of text-to-
speech systems [1, 2], movie dubbing [3], foreign language
learning [4], and as a component in speech-to-speech transla-
tion systems [5].

Note: This material is based upon work supported by the National Sci-
ence Foundation under Grant No. 1116475. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.

Voice conversion (VC) systems aim to transform seg-
ments of speech from a given source speaker so that it can
be identified as spoken by a different target speaker. This
conversion involves transforming spectral features as well
as prosodic features like pitch and speaking rate [6]. Well
stablished VC algorithms focus on transforming short-time
vocal tract spectral features using statistical methods based
on Gaussian Mixture Models (GMM) [1, 7]. Furthermore,
results in [8, 9] showed that the source signal (e.g. linear pre-
diction residual) in the classic source-filter model of speech
production also contains valuable information, not only for
speaker identification but also for speech naturalness. Recent
work has attempted to improve on [8, 9] by borrowing ideas
from speech synthesis using Hidden Markov Models (HMM)
to map source to target vocal tract features.

Of particular interest for the work presented here are the
ideas shown on [10], where a HMM-based system is proposed
as an incremental modification of the one presented in [11].
While most VC systems in the literature deal with conversion
between a single source and target speakers at a time, the main
contribution of [10] is the creation of an speaker-independent
voice conversion framework, where the source speaker can be
changed with little or no extra training, broadening the range
of possible applications for VC. However, because it requires
phonetic labeling of the input speech, the system in [10] is still
not easily applicable in scenarios of cross-language conver-
sion with no bi-lingual training data, where a phonetic match
between source and target language is not practical or pos-
sible. The system in [10] will be referred here as Phoneme
Dependent - HMM (PD-HMM).

The main contribution of the work presented here is then
to propose an HMM-based VC algorithm that requires no ex-
plicit phonetic labeling, making it more suitable for cross-
language applications, while achieving at least the same level
of performance in identity conversion and speech quality than
the PD-HMM system. This system will be called Phoneme
Independent - HMM (PI-HMM). In addition to propose an
alternative way to use HMM to perform voice conversion,
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the PI-HMM also uses an algorithm for excitation estimation
proposed by the authors in [12], and which has been deter-
mined to improve both identity conversion and speech quality
on GMM-based conversion systems [12, 13].

2. PHONEME-DEPENDENT HMM VOICE
CONVERSION (PD-HMM)

Figure 1 shows a diagram of the Phoneme-dependent HMM
VC system presented in [10]. For the training section, speech
from multiple speakers is used to train speaker-independent
phoneme HMMs for the particular language involved in the
conversion, in the same way that would be done for a speaker-
independent automatic phoneme recognizer. Training data
from the target speaker is then used to adapt the speaker-
independent HMM models into target speaker models using
Constrained Structural Maximum A Posteriori Linear Regres-
sion (CSMAPLR) [14] and Maximum A Posteriori (MAP)
estimation [15]. Both sets of models, speaker-independent
and target-adapted, are stored for use in conversion. For con-
version, first Mel-cepstrum, phoneme and F0 sequences are
extracted from the source speaker speech. The phoneme se-
quence is obtained using the speaker-independent models and
the Mel-cesptrum coefficients and then used for computing
the F0 sequence using adaptive F0 quantization. The con-
verted speech features (Mel-cepstrum coefficients) are gener-
ated from the target-adapted HMM model using the phoneme
and F0 sequences from the previous step and Maximum Like-
lihood (ML) criterion. Finally, the converted speech is syn-
thesized using a Mel-Log Spectrum Approximation (MLSA)
filter.

3. PHONEME-INDEPENDENT HMM VOICE
CONVERSION (PI-HMM)

The proposed Phoneme-Independent HMM conversion algo-
rithm uses Linear Prediction (LP) filtering for analysis and
synthesis, and is composed by two main stages. First, the
spectral features, i.e. Linear Spectral Frequencies (LSF),
from the source speaker are converted into the target speaker
feature space using a neutral HMM and speaker adaptation.
Second, the corresponding target excitation signal for syn-
thesis is estimated from the converted LSF vectors using the
algorithm presented in [12]. The next subsections give more
details about these stages.

3.1. Conversion of vocal tract features

The first stage on the PI-HMM model for both training and
coversion modes is a pitch-synchronous LP analysis, gener-
ating a sequence of LSF and corresponding inverse filtering
excitations from the input speech. Using as many training
speakers as available, a speaker-independent HMM is created
using the LSF sequences as observations and GMM as each

Fig. 1. Diagram for PD-HMM VC [10].

state distribution. Contrary to the PD-HMM algorithm from
Section 2, on this single HMM states do not correspond to
phonemes, but rather to acoustical units determined dynami-
cally and automatically from the training data. Several HMM
with different sizes, state distribution and inter-state connec-
tion limitation (fully-connected, left-to-right, etc) are trained
and Maximum Likelihood (ML) criterion is used to select the
model that better matches the training data. The resulting
model is called ’neutral model’ because it is specific to a par-
ticular language but not to a particular speaker. The neutral
model is used next to classify the training LSF sequences into
the underlaying states and create an LSF Vector Quantizing
(VQ) table for each state. The neutral HMM model and VQ
table are then stored for use in conversion mode. Additionally,
as is the case for the PD-HMM algorithm, a target-dependent
HMM is created using CSMAPLR to adapt the HMM param-
eters. The state-associated VQ tables are then updated for the
target-specific model by classifying only the target speaker
training data with the new model. Figure 2 illustrates the
training process.

During conversion mode, the sequence of source speaker
LSF computed from the analysis stage is then used in conjuc-
tion with the neutral model to generate the sequence of states
with maximum likelihood (ML). That sequence of states is
then input to the target-specific HMM to compute a converted
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Fig. 2. Diagram for PI-HMM VC training.

sequence of target LSF vectors by applaying again the ML
criterion. The resulting sequence of converted LSF vectors
is the used as input for both, LP synthesis and the excitation
estimation algorithm described on the next section.

3.2. Excitation estimation

During conversion, the converted spectral features (LSF) ob-
tained during the previous stage are then used to estimate
the corresponding excitation signal for the LP synthesis filter.
This process involves a separate HMM model trained exclu-
sively on target speaker data using LSF sequence as obser-
vations and the corresponding quantized inverse LP filtering
excitations as hidden states. The training and estimation pro-
cesses were already detailed by the authors on [12], an illus-
tration can be seen on Figure 3.

4. EXPERIMENTAL SETUP

Subjective testing was used to compare the performance
of the two VC systems under consideration. The Entropic
Latino-40 speech database was used as source of data. The
Latino-40 database contains speech from 40 speakers, 20
males and 20 females, of Latin American Spanish. For each
speaker 125 sentences were chosen randomly from a pool

Fig. 3. Excitation estimation algorithm for PI-HMM VC.

of 13,000 sentences from Latin American newspapers, so
each speaker has a different set of data in the database. For
the tests presented here, 4 speakers, 2 males and 2 females,
were chosen and for each speaker the pool of 125 avail-
able sentences was randomly divided into 100 sentences for
training and 25 for testing. A series of listening tests were
used to subjectively evaluate two main performance metrics:
identity conversion and synthesis quality. The same group
of 20, college age, native Latin American Spanish speakers
participated as listeners on each listening test.

An ABX test was done to evaluate how well each sys-
tem performed identity conversion. For this ABX test, listen-
ers had to rate 10 examples of conversions for each conver-
sion case (i.e., Male-to-Male (M-M), Female-to-Female (F-
F), Male-to-Female (M-F), Female-to-Male (F-M)) and VC
system under test (i.e., PD-HMM or PI-HMM), according to
the ABX scale (1, no conversion, to 5, perfect conversion into
target).

A MOS test was carried out to evaluate converted speech
quality from both systems, using the standard MOS scale that
goes from 1 = Very poor quality to 5 = Excellent quality. For
this MOS test, listeners were presented 10 sentences for each
conversion case and each VC system. Additionally, the lis-
teners also rated 10 original, unconverted target speaker sen-
tences in order to give a reference value for the perceived
quality of the original database recordings.

5. TESTS AND RESULTS

Table 1 summarizes the average ABX results for both PD-
HMM and PI-HMM systems. Statistical analysis of the re-
sults showed that there is no significant difference, at the 1%
or 5% level, for the two systems. This initial results indi-
cates that the combination of a Phonetic-Independent Speaker
Adapted HMM conversion for vocal tract features plus HMM
estimation for the excitation signal is able to compensate for
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Table 1. Average ABX results for every type of conver-
sion. Male-to-Male (M-M), Female-to-Female (F-F), Male-
to-Female (M-F), Female-to-Male (F-M).

Test
type

Avg. score
PD-HMM

Avg. score
PI-HMM

Difference

M-M 3.98 4.00 0.02
F-F 3.95 4.02 0.07
M-F 4.01 3.97 -0.04
F-M 4.12 4.10 -0.02
Overall 4.01 4.02 0.01

the absence of phonetic labeling (and the knowledge about
a particular language phonetics that it requires) on the input
data as required by the PD-HMM algorithm. PI-HMM thus
gives comparable performance on speaker identity evaluation
while imposing less requirements on the training and testing
speech data.

Regarding speech quality evaluation, Table 2 summarizes
the average MOS results for each system and each type of
conversion. As a reference, the average MOS score for the
original recordings without conversion was found to be 4.92,
confirming that the original database data is of high quality
recordings. Taking into account that a difference of 1 point
or more on the MOS scale is considered a very significant
difference in perceived quality, the fact that both VC sys-
tems achieved MOS scores lower that 4.0 on every case while
the original recordings were evaluated with a 4.92, indicates
that the VC processing is still causing significant degradation
compared with the input speech. Nonetheless, statistical anal-
ysis shows that the PI-HMM system achieves significant qual-
ity improvement at the 1% level for cross-gender conversion
cases and 5% level for same-gender conversions with respect
to the PD-HMM system. Arguably this could attributed to the
excitation estimation stage adding some extra spectral details
to the converted speech, which results on a higher perceptual
naturalness and quality.

As an additional note, altought care must be taken because
of the different experimental setups, the ABX and MOS re-
sults presented here when compared with the results in [12]
and [10] seem to confirm the advantages of HMM-based VC
systems versus traditional GMM-based systems. In particu-
lar, HMM-based systems are confirmed to achieve more con-
sistent quality scores between same-gender and cross-gender
conversions as opposed to GMM-based systems where there
is a significant dip in quality for cross-gender conversions
[12, 10].

6. CONCLUSIONS

The work presented here compares two HMM-based algo-
rithms for voice conversion. The first algorithm, PD-HMM,
requires a phonetic labeling step of the input speech, which

Table 2. Average MOS results for every type of conver-
sion. Male-to-Male (M-M), Female-to-Female (F-F), Male-
to-Female (M-F), Female-to-Male (F-M).

Test
type

Avg. score
PD-HMM

Avg. score
PI-HMM

Difference

M-M 3.77 3.88 0.11
F-F 3.72 3.85 0.13
M-F 3.62 3.91 0.29
F-M 3.65 3.83 0.18
Overall 3.69 3.87 0.18

implies an explicit knowledge of the phonetics of the lan-
guage involved in the conversion. By droping that phonetic
requierement, the proposed PD-HMM algorithm aims to be
more suitable to application scenarios where it may be not
practical to use explicit language phonetics, for example when
source and target speakers are using different languages and
thus a different set of standard phonemes. The results from
subjective tests indicate that the proposed PI-HMM system
achieves equivalent identity conversion performance than the
PD-HMM according to ABX scores. On the speech quality
metric, the PI-HMM algorithm achieves results statistically
superior to the PD-HMM algorithm on the MOS scale, al-
thought still showing considerable quality degradation with
respect to the original unconverted recordings. According to
the results presented here, future work will be focused on two
aspects: improving quality scores to bring them closer to the
quality of the input speech and apply the PI-HMM algorithm
to cross-language conversion scenarios.
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