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ABSTRACT
In this paper, we propose a simple and efficient non-parallel

training scheme for voice conversion (VC). First, the speaker

models are adapted from the background model using max-

imum a posteriori (MAP) technique. Then, by utilizing the

parameters of adapted speaker models, the Gaussian normal-

ization and mean transformation methods are proposed for

VC, respectively. In addition, to improve the conversion per-

formance of the proposed methods, a combination approach

is further presented. Finally, objective and subjective experi-

ments are carried out to evaluate the performance of the pro-

posed scheme, the results demonstrate that our scheme can

obtain comparable performance with the traditional GMM

method based on parallel corpus.

Index Terms— Voice conversion, non-parallel training,

MAP, Gaussian normalization, mean transformation

1. INTRODUCTION

The goal of voice conversion (VC) is to convert the speech

spoken by a source speaker to sound like that spoken by a

target speaker. The applications include personalized text-to-

speech synthesis, spoofing attacks to speaker recognition sys-

tems, and providing speaker individuality in ultra low bit-rate

communication systems, etc.

Many approaches have been proposed for VC, such as

mapping codebooks [1], Gaussian mixture model (GMM) [2,

3], artificial neural networks (ANN) [4], partial least squares

regression (PLSR) [5], dynamic frequency warping (DFW)

[6], and some combinations of them [7]. All these methods

can obtain satisfactory results to some degree. However, they

are conducted on a large parallel corpus, which is usually un-

available in practical situations.

In the past decade, several non-parallel training methods

have been proposed. Ye et al. present a maximum likeli-

hood (ML) approach to solve the non-parallel training prob-

lem [8]. In this approach, first, the hidden Markov model
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(HMM) is used to train the statistical model of target speaker,

then the conversion function is estimated by maximizing the

likelihood of the source spectral vectors with respect to the

target model. Mouchtaris et al. employ a speaker adapta-

tion technique to adapt the speech pairs of source and target

speakers, and the conversion function is derived from a differ-

ent pair of reference speakers [9]. Lee et al. propose a GMM

based VC method using MAP adaptation, which needs the

parallel utterances of source and reference speakers [10]. Erro

et al. propose an iterative alignment method to improve the

versatility of current VC systems, which allows non-parallel

or even cross-lingual conditions [11]. All these methods can

obtain comparable performance to the current parallel train-

ing method. However, they have some disadvantages, such as

depending on large-scale corpus, or prior parallel reference

conversion functions.

Different from the above-mentioned methods, in the pa-

per, we propose a novel non-parallel training scheme for VC

using small training corpus. The source and target speaker

models are adapted from the background model, and two

VC approaches are presented according to the parameters of

adapted speaker models, one is the Gaussian normalization

method, the other is the mean transformation method. In

addition, the combination of these two methods is further

proposed to improve the conversion performance.

The paper is organized as follows. Section 2 describes the

baseline GMM method. Section 3 first gives the steps of the

proposed scheme, and then presents the non-parallel training

methods. The experimental results are reported and discussed

in section 4. Finally, the main conclusions of the paper are

provided in section 5.

2. CONVENTIONAL GMM BASED VOICE
CONVERSION METHOD

GMM is the most popular approach for VC [2], and is chosen

as the baseline of our method. Let X = {x1, x2, ..., xT } and

Y = {y1, y2, ..., yT } represent the aligned parallel spectral

feature sequences of source and target speakers, respectively,
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and Z = {z1, z2, ..., zT } be the spectral feature pair series,

where zt = [xT
t , y

T
t ]

T (the superscript T denotes transpo-

sition). Z is modeled by a GMM, which takes the form as

follows:

p(Z) =
M∑
i=1

αiN(z, μi,Σi) (1)

Where αi is the prior probability of Z, M is the number of

mixture components, N(z, μi,Σi) denotes the Gaussian dis-

tribution of the i-th component, and μi and Σi are the mean

vector and covariance matrix, respectively. The conversion

function between source feature x and target feature y is given

as follows:

F (x) = E(y|x) =
M∑
i=1

p(i|x)
(
μy
i +

Σxy
i

Σxx
i

(x− μx
i )
)

(2)

Where μi =

[
μx
i

μy
i

]
, Σi =

[
Σxx

i Σxy
i

Σyx
i Σyy

i

]
, and p(i|x) is the

posterior probability of x belonging to the i-th component,

which is given by

p(i|x) = αiN(x, μx
i ,Σ

xx
i )∑M

j=1 αjN(x, μx
j ,Σ

xx
j )

(3)

3. PROPOSED SCHEME

The GMM method is efficient and robust for VC. However,

it is performed on a parallel corpus, which is often not fea-

sible in practice. In order to address this problem, all kinds

of approaches have been proposed in [8–11]. However, these

methods still have some limitations, they need large-scale cor-

pus or pre-defined parallel reference conversion functions. In

this section, we propose a novel VC scheme based on a small

non-parallel corpus.

The training process of the proposed scheme can be di-

vided into the following steps:

1) First, like the universal background model (UBM) in

speaker recognition systems [12], a background model

is learned from the utterances of reference speakers.

2) Then, the models of source and target speakers are

adapted from the background model by using the train-

ing utterances, respectively.

3) Finally, the conversion functions are estimated by uti-

lizing the means and variances of speaker models.

3.1. Model adaptation

The MAP approach [13] is the popular adaptation strategy for

GMM-UBM speaker recognition system, and is chosen for

model adaptation of the proposed scheme. As small adap-

tation data cannot exactly describe each parameter of Gaus-

sian components, only means and variances are considered

in this paper. Let the observed spectral feature sequences

o = {o1, o2, ..., oT }, and ωi, μ
i
B , and σi

B be the weight, mean

and variance of the i-th component of the background model,

respectively. The updated formulas of mean and variance are

written as

μ̂i
B = γiEi(o) + (1− γi)μ

i
B (4)

σ̂i
B
2 = γiEi(o

2) + (1− γi)(μ
i
B
2 + σi

B
2)− μ̂i

B
2 (5)

Where Ei(o) and Ei(o
2) are the statistics of mean and vari-

ance of the i-th component, respectively, and γi is the adapta-

tion factor [12], and is given by

γi =
ni

ni + ρ
(6)

Where ni is the statistic of weight, and ρ is the coefficient

describing the correlations between adapted and background

models, and is optimized as 16 for our experiments. After

adaptation, the parameters of source and target speaker mod-

els, {ωi, μ
i
x, σ

i
x} and {ωi, μ

i
y, σ

i
y} will be computed, respec-

tively.

3.2. Gaussian normalization

The Gaussian normalization method is proposed for non-

parallel spectral transformation. Different from the above-

mentioned parallel or non-parallel VC methods, it can effi-

ciently simplify the VC process, which can even avoid the

training process of conversion function. The flowchart of this

approach is shown in Fig.1.

Fig. 1. Flowchart of Gaussian normalization method.

In the conversion phase, given a frame of spectral feature

of source speaker xt and the adapted source speaker model,

the posterior probabilities of xt belonging to the Gaussian

components are computed. In [5], the experimental results

have demonstrated that single Gaussian component often

dominates each frame, so the component with maximum

posterior probability is chosen, which is given by

m = arg
i

max p(i|xt) i = 1, 2, ...,M (7)

Where p(i|xt) takes the same form as Eq.(3). To the m-th

component, we assume that the spectral features of source and

target speakers belong to a Gaussian distribution with specific

mean and variance, and will obtain the following equation:

x− μm
x

σm
x

=
ŷ − μm

y

σm
y

(8)

The converted spectral features ŷ will be computed, and

the conversion function can be defined as

F (x) =
σm
y

σm
x

x+ μm
y − σm

y

σm
x

μm
x (9)
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3.3. Mean transformation

The mean transformation approach is also proposed for non-

parallel training. In this method, the mapping abilities of

mean vectors of GMMs from source speaker to target speaker

are investigated. Given the mean spectral feature sequences

of source and target speaker models, μx = {μ1
x, μ

2
x, . . . , μ

M
x }

and μy = {μ1
y, μ

2
y, . . . , μ

M
y }, respectively, the mean transfor-

mation function between μx and μy is written as follows:

F (μx) = Aμx + b (10)

Where A and b are the transformation parameters. Assume

μ̄x = 1
M

∑M
i=1 μ

i
x and μ̄y = 1

M

∑M
i=1 μ

i
y , by employing the

least squared algorithm, the unknown transformation param-

eters A and b will be computed, and given by

A = μ̂yμ̂
T
x (μ̂xμ̂

T
x )

−1, b = μ̄y −Aμ̄x (11)

Where μ̂x = μx − μ̄x and μ̂y = μy − μ̄y .

It can be easily found that different from the alignment

procedures in parallel VC, there exists a one-to-one corre-

spondence between the mean vectors of source and target

speaker models, it can avoid the forced alignment errors by

means of dynamic time warping (DTW) algorithm in tradi-

tional GMM methods [2, 3]. The mean transformation func-

tion can roughly describe the mapping relationships between

the spectral features of source and target speakers, and is di-

rectly adopted for spectral transformation. The conversion

function is given as below:

F (x) = Ax+ b (12)

3.4. Combination algorithm

The proposed two approaches can convert source speech to

target speech to a certain degree. On one hand, the Gaussian

normalization method can be regarded as local linear regres-

sions in discrete spaces. On the other hand, the mean transfor-

mation method is a global round prediction method. In order

to further improve the conversion performance, an algorithm

is proposed to combine the local and global regression meth-

ods, and the combination function is defined as

F (x) = θFg(x) + (1− θ)Fm(x) (13)

Where Fg(x) and Fm(x) are the conversion functions of

Gaussian normalization and mean transformation approaches,

respectively, and θ is the coefficient and satisfies 0 ≤ θ ≤ 1.

The selection of θ is key to the performance of combination

algorithm. In this paper, it is chosen by using the iteration

algorithm with step size 0.01. In this paper, when the number

of adaptation utterances is lower than 8, θ is optimized as

0.19 for the experiments, or it will be set as 0.73.

3.5. Model optimization using K-L divergence

It is worth noting that the speaker models are trained by lim-

ited adaptation utterances, which cannot ensure that the pa-

rameters of each mixture component are updated, and will

affect the precision of conversion function. In this paper, an

algorithm by employing Kullback-Leibler (K-L) divergence

is proposed to address this problem [14]. The divergence be-

tween two distributions f(c) and g(c) is defined as

D
(
f(c)||g(c)) = ∑

c

f(c) log
f(c)

g(c)
(14)

Note that Eq.(14) is not symmetric, we can adopt a symmetric

divergence to measure the distance between f(c) and g(c),
which is given as follows:

Dfg =
1

2

(
D
(
f(c)||g(c))+D

(
g(c)||f(c))) (15)

For simplicity, only means are considered. The proposed al-

gorithm consists of the following steps:
1) First, the similarities between different components of

each speaker model are computed by symmetric diver-

gence.

2) Then, if μi
x equals μi

B or μi
y equals μi

B , update μi
x with

μj
x or μi

y with μl
y, respectively, where j and l are the

most similar components of the i-th components for

source and target speakers, respectively.

3) Repeat step 2), until it satisfies the conditions: μi
x �=

μi
B and μi

y �= μi
B .

4. EXPERIMENTS

We carry out experiments on the CMU ARCTIC corpus. The

speakers BDL and CLB (each has 500 utterances) are chosen

for the background model training, while speakers RMS and

SLT are chosen for voice conversion. Two cases: the trans-

formation of RMS-to-SLT (male to female, M-F) and trans-

formation of SLT-to-RMS (female to male, F-M) are used

for evaluations. Four kinds of VC methods are compared,

they are the baseline GMM method with parallel training data

(GMM), and the proposed three kinds of non-parallel train-

ing approaches, including the Gaussian normalization method

(GN), the mean transformation method (MT), and the combi-

nation method (GNMT).

Each subset (RMS or SLT) consists of 120 utterances,

from which, the same 50 utterances are prepared for the base-

line parallel training, and different 50 utterances are prepared

for the proposed approaches, while another 20 utterances

are used for testing. The 24-order Mel-cepstral coefficients

(MCEPs) are extracted to represent the spectral features, and

the mixture number of background model is set as 256, while

the mixture number of baseline GMM method is optimized

as 16. The F0s are converted using logarithm Gaussian nor-

malization approach [4], and 6 subjects participate in the

listening tests.
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4.1. Objective evaluation

Mel-cepstral distance (MCD) is a known error measurement

between converted speech and target speech, and has been

widely employed for objective evaluations of VC [4]. It is

defined as follows:

MCD =
10

log 10

√√√√2
24∑
d=1

(mt
d −mc

d)
2 (16)

Where mt
d and mc

d are the d-th coefficient of MCEPs of target

and converted speech, respectively.
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(a) M-F
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(b) F-M

Fig. 2. Average MCDs using different number of adaptation

utterances. The dashed line corresponds to the GMM based

VC using parallel corpus.

Fig.2 gives the results of MCDs of M-F and F-M. It can be

easily found that as expected, with increase of the number of

adaptation utterances, the MCDs of the proposed approaches

show the same trend directions: they all become nearer to

those of the baseline method. This is due to the fact that

with increase of adaptation data, the adaptation models be-

come closer to the true speaker models. When the number of

adaptation utterances is smaller than about 8, the MT method

shows superior results to the GN method. Meanwhile, when

the adaptation corpus becomes larger, the GN method per-

forms better. It can be also found that the MCDs of combina-

tion algorithm show always lower values than those of GN or

MT approaches, which indicates that the combination strat-

egy can be an efficient way to boost the GN and MT methods.

4.2. Subjective listening evaluation

In subjective tests, 5 utterances of each speaker are used for

model adaptation. The mean opinion score (MOS) and simi-

larity tests are conducted, respectively. In MOS test, the lis-

teners are asked to rate the perceptual quality of the converted

speech in a 5-point score: (1:bad, 2:poor, 3:fair, 4:good, 5:ex-

cellent). While in similarity test, the listeners evaluate the

similarities between the converted speech and target speech,

also in a 5-point range from 1 ”different” to 5 ”identical”.

The proposed GNMT and baseline GMM approaches are

compared for evaluations. In Fig.3(a) and Fig.3(b), the over-

all results of quality and similarity tests are presented, respec-

tively. We can observe that the proposed method can yield

comparable results to the baseline GMM method, which con-

firms the results of objective evaluations to some extent.

M−F F−M1

1.5

2

2.5

3

3.5

4

4.5

5
Proposed
GMM

(a) Quality

M−F F−M1

1.5

2

2.5

3

3.5

4

4.5

5
Proposed
GMM

(b) Similarity

Fig. 3. Subjective test results (95% confidence interval).

5. CONCLUSIONS

This paper proposes a novel non-parallel VC scheme using

small training corpus. The MAP adaptation technique is

adopted to train the models of source and target speakers, and

the Gaussian normalization, mean transformation, and com-

bination approaches using parameters of adaptation models

are presented, respectively. Experimental results on CMU

ARCTIC corpus indicate that compared to the traditional

GMM method based on parallel corpus, our scheme has a

comparable performance in terms of cepstral distortion, and

also obtains satisfactory speech perceptibility and similarity.
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