
F0 CONTOUR PREDICTION WITH A DEEP BELIEF NETWORK-GAUSSIAN PROCESS
HYBRID MODEL

Raul Fernandez 1, Asaf Rendel 2, Bhuvana Ramabhadran 1, Ron Hoory 2

1 IBM TJ Watson Research Center, Yorktown Heights, NY 10598 – USA
2 IBM Haifa Research Lab, Haifa – Israel

ABSTRACT

In this work we look at using non-parametric, exemplar-based re-
gression for the prediction of prosodic contour targets from textual
features in a speech synthesis system. We investigate the perfor-
mance of Gaussian Process regression on this task when the covari-
ance kernel operates on a variety of input feature spaces. In partic-
ular, we consider non-linear features extracted via Deep Belief Net-
works. We motivate the use of this hybrid model by considering the
initial deep-layer model as a feature extractor that can summarize
high-level structure from the raw inputs to improve the regression
of an exemplar-based model in the second part of the approach. By
looking at both objective metrics and perceptual listening tests, we
evaluate these proposals against each other, and against the standard
clustering-tree techniques implemented in parametric synthesis for
the prediction of prosodic targets.

Index Terms— speech synthesis, intonation generation, neural
networks, Gaussian processes

1. INTRODUCTION

Data-driven speech synthesis systems can be broadly contrasted
in terms of the ways in which they make use of the data during
the learning and run-time stages of the process to infer and pre-
dict prosodic properties of the acoustic waveform. In the case of
unit-selection systems, typical architectures exploit prosodic mod-
els to generate desired target values to use as a component of the
cost function driving the unit search. Retrieved units can then be
post-processed to closely match these targets, or be minimally post-
processed to retain most of the natural prosody inherent in the units,
an approach that often lends unit-selection systems their prosodic
naturalness. Toward the other end of a continuum, we have fully
parametric, model-based systems which use the training data only
during the learning stage to adapt the model parameters, and then
use the models at run-time to generate prosodic parameters that can
be used directly in the speech-generation stage. Since the data plays
no further role after training, these systems incur a small footprint
size, which is one of their desirable properties. In this work we are
interested in exploring a particular intermediate point where, while
still assuming an underlying model-based architecture, we consider
non-parametric, exemplar-based models that can exploit the data,
adaptively, at run time based on their relevance to the run-time
cases. We focus on the task of F0 generation where exemplars are
state-sized observations, a temporal granularity that could still allow
keeping the footprint of the system in check for many applications.
We review the components of this model in section 2 and related
work in 3, and present objective and perceptual evaluations of the
system in 4.

2. MODELING APPROACH

The approach consists of a two-stage model where inputs are first
non-linearly transformed using a neural network and then used as the
input to a Gaussian-process regression model (see Fig. 1). The moti-
vation behind such a proposal aims to combine the relative strengths
of both a parametric and a non-parametric model in a regression set-
ting: an initial model is used to extract high-level structure in the
form of a vector of parameters, and then an exemplar-based model
can better exploit the structured representation over that afforded by
the raw inputs in order to improve the quality of the regression.

On one hand, neural networks (NNs), particularly when struc-
tured with several deep layers, have been documented to be able to
extract high-level structure from raw inputs, that can then be used
directly in a high-level classification or regression task (such as digit
recognition [1] or acoustic modeling for speech recognition [2]). Be-
ing parametric in nature, however, such models can be adversely
affected by a large input dimensionality in the case of insufficient
training data. On the other hand, non-parametric models (such as
the Gaussian processes (GPs) with constant number of dimension-
independent hyperparameters we consider here) can be more robust
to a large dimensionality in the presence of limited data, and, being
exemplar-based, can reproduce some of the detail in the data that a
parametric model might not be able to reproduce or require a large
number of parameters in order to do so.

The cascade and use of these individual models reflect these ob-
servations. An NN is first trained to reproduce the targets yt from
a given set of inputs xt (Fig. 1-1). In addition to serving as a full
predictive model X → Y , such a structure can also be used as a
(non-linear) feature extractor by tapping into the ouputs after the
inputs have been transformed by the nth layer. These nth-level fea-
tures zt can then be paired with the respective outputs and treated as
the exemplars by the GP. This approach further allows to automat-
ically incorporate dimensionality reduction by simply constraining
the number of nodes in the nth layer (i.e., by imposing a bottleneck
structure on the NN). To keep the number of parameters in check,
the NN is trained in a “context-independent” manner; that is, the
training tokens consist of the pairs {xt,yt}. Context, however, can
be easily incorporated in the GP regression by considering the aug-
mented exemplars {[zTt−M , · · · , zTt , · · · , zTt+M ]T ,yt} when train-
ing the hyperparameters θ of the GP model (Fig. 1-2).

Since in this work we consider only single-output Gaussian pro-
cesses, 3 independent GP models are learned in the training phase,
one associated with each stream k of the target F0 vector gener-
ally used in parametric synthesis: log F0, as well as the delta and
delta-delta sequences. These sequences represent state-level mean
statistics of the respective frame-level curves, where the state seg-
mentation has been previously generated by forced alignment, with
3-state hidden Markov models (HMM), between the acoustic wave-

6885978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



forms and the phonetic transcripts (i.e., the observations correspond
to roughly 1/3 of a phone). At run time (Fig. 1-3), all that is needed
to generate the predictions from the inputs are the transform associ-
ated with the nth layer (T = T1◦T2 · · ·◦Tn, where Tj = g(Wjxj),
Wj are the weights of the jth layer, xj the inputs arriving at that
layer, and g(·) is the logistic function in our implementation), the
GP model’s hyperparameters θ(k) for each stream k, and the exem-
plars in the training database. We next review in more detail the
training of the NN, and provide a brief overview of GP regression
and training.

Fig. 1. Model describing (1) neural network training, resulting in
feature transform T (2) Gaussian Process training (3) prediction of
the hybrid model.

2.1. Neural Networks

This work makes use of recent techniques for neural-network (NN)
training in which a two-pass approach combines an underlying gen-
erative model, trained in an unsupervised manner, with standard su-
pervised techniques for training the discriminative model. In the
first, or pretraining, phase of this procedure, all but the output layer
of a deterministic, feed-forward NN are replaced with an undirected,
probabilistic, generative model. Such a structure, known as a Deep
Belief Network (DBN), is first trained in an unsupervised manner
(i.e., ignoring the network targets). After the weights of this structure
have been learned, they are used to initialize the feed-forward struc-
ture which, with the output targets now restored, is further trained
using back-propagation to minimize the loss function on the output
layer (in our case, mean squared error) between the targets and the
predictions.

The training of the DBN is performed layer-wise by learning the
weights between each pair of layers at a time. Each undirected bi-
partite graph structure resulting from this decomposition is known as
a Restricted Boltzmann Machine and can be trained fairly efficiently
using the gradient-descent with Contrastive Divergence algoritmh
proposed in [1] and [3]. Given that all inputs to the model have been
encoded as boolean indicators, the RBM only contains connections
between Bernoulli-distributed variables.

For the reported experiments, both pretraining and back-
propagation are trained using stochastic gradient descent, with
mini-batches of 100 states. The back-propagation training is guided
by the performance on an independent development set. After four
full passes through the data, loss is measured on the development
set. If the loss has increased, the learning rate is reduced by a factor
of two and the weights are restored to their value at the beginning of
the epoch. The learning stops after several reductions of the learning

rate.

2.2. Gaussian Processes

A Gaussian Process is a collection of random variables, any finite
collection of which have a jointly Gaussian distribution, and which
can be completely specified by its input-dependent mean function
m(x) and covariance function k(x,x′) [4]. We allow for the under-
lying samples of the GP to be corrupted by independent, indentically
distributed Gaussian noise ε ∼ N (0, σ2

n), and assume a constant
mean to arrive at the model:

y = f(x) + ε (1)
f(X) ∼ N (m,K) (2)
Kij = k(xi,xj) + σ2

nδij (3)

The jointly Gaussian definition above also implies a conditional
Gaussian over a subset of such variables by the marginalization
property of Gaussian distributions. Considering two sets of vari-
ables corresponding to the observations yTR in a set of training
cases and the underlying function values of a set of test cases fTE ,
then it still holds that:[
yTR

fTE

]
∼ N

(
m,

[
K(XTR,XTR) + σ2

nI K(XTR,XTE)
K(XTE ,XTR) K(XTE ,XTE)

])
(4)

from which, after marginalization, the conditional distribution
p(fTE |yTR) can be shown to follow

fTE |yTR ∼ N (f̄TE , cov(fTE)) (5)
f̄TE = m + {K(XTE ,XTR)×

[K(XTR,XTR) + σ2
nI]−1(yTR −m)} (6)

cov(fTE) = K(XTE ,XTE)−
{K(XTE ,XTR)[K(XTR,XTR) + σ2

nI]−1 ×
K(XTR,XTE)} (7)

Since the conditional is also a Gaussian, Eqs. 6 and 7 provide the
MAP estimate and error bars for a given set of test cases XTE based
on the exemplar pairs {XTR,yTR}. The computation of these equa-
tions involves evaluating (and inverting) matrices whose entries are
determined by the choice of correlation function k(xi,xj). To en-
sure positive definiteness, k(·, ·) must be a valid kernel (i.e., it can be
represented as an inner product of functions). Of the various com-
monly studied functions in the literature which satisfy this condition,
we have adopted a simple squared exponential covariance function1:

k(xi,xj) = exp

(
−h ||xi − xj ||2

2σ2
k

)
, (8)

where h and σk, in addition to σn (the noise-model variance), are
hyper-parameters of the GP (θ = [h, σk, σn]T ). As variations in this
hyper-parameter set can lead to very different output processes, it is
important for accurate prediction to properly estimate them from the
training set. This can be done by maximizing the marginal likelihood
of the training observations (the evidence function) given by:

log p(yTR|XTR, θ) = −1

2
(yTR −m)TK−1

TR(yTR −m)

−1

2
log |KTR| −

n

2
log(2π) (9)

KTR
.
= K(XTR,XTR) + σ2

nI (10)

1In fact, earlier experiments with a variety of kernel types yielded very
similar results.

6886



It should be clear that, though we know the test inputs are arranged
in a pre-defined sequence at run-time, the collection of random
variables that define this model do not have a temporal arrangment
among them (i.e., it is not a sequential model). There is no implicit
notion of time beyond what is addressed by the augmented input
context. The training exemplars contribute to the prediction based
on their correlation to the test exemplars, as measured in input space
(i.e., the text-based features, not time). The dynamic evolution is ad-
dressed by including the delta sequences and using these within the
well-known parameter-generation algorithm in HMM synthesis [5].

In the experiments reported, gradient descent was used to maxi-
mize Eq. 9. Both during training and prediction, the FITC approxi-
mation was used to deal with the inversion of the Grammian matrix
KTR containing a large number of exemplars [6]. Furthermore,
stochastic gradient descent was performed over smaller batches
(containing approximate 15000 exemplars), and an independent de-
velopment set was used to track the quality of the model after every
batch iteration and to select the best-performing model.

3. RELATED WORK

Although both NNs and GPs are established techniques in the statis-
tical modeling literature, we believe that their combined use in the
hybrid approach we have proposed for predicting intonation from
text in a speech synthesis system represents a novel contribution in
this area. A variety of NN structures, including multi-layer percep-
trons and recurrent networks, were previously investigated on the
task of F0 modeling for Japanese TTS in the work of [7]. Besides be-
ing a fully parametric approach (i.e., non exemplar based), that work
also differs from ours in the specific NN training methodology, and
in that a Fujisaki model decomposition of the F0 curve is assumed
prior to modeling whereas our observations are the direct state-level
sequences. Though the use of DBNs to do unsupervised pre-training
of NNs has been investigated in other speech applications, such as
excitation modeling [8] and, most notably, speech recognition [2]),
their use in prosody modeling represents a novel application.

GPs, perhaps due to their quadratic dependence on the size of
the exemplar database, have not been as fully explored in speech ap-
plications. They have, however, received some recent attention for
voice-conversion applications in the work of [9] where they are in-
tegrated into a mixture-of-experts framework, and for speech recog-
nition (i.e., classification not regression) in the work of [10]. In the
area of synthesis, the most relevant prior work is that of [11], who
looked at using GPs as the building blocks of a dynamical system
whose state transitions and state emissions can both be described in
terms of GP models. There are several differences between that work
and ours worth higlighting: (i) as mentioned, we do not address dy-
namics in this work during the state-level F0 generation (that is done,
rather, during generation of the F0 frame-level curve by taking into
account the predicted deltas); (ii) we model each stream (F0 and
the delta sequences) independently whereas they use a GP with la-
tent variables (GP-LVM), a model which allows coupling between
the streams (we, instead, couple them during the NN training); (iii)
being primarily a proof-of-concept, their work offers very limited
evaluation (based on 2-sentence resynthesis task), whereas we have
used a full database to build a full synthesis system and replaced the
standard F0-generation component with the current proposal in the
evaluation.

4. EVALUATION

4.1. Data Description

The approach was evaluated using a synthesis training database con-
taining about 3 hours of profesionally recorded speech from a female
speaker of North American English. Independent development and
test sets of about 20 minutes each were also used for model-selection
and final evaluation tasks. The corpus was phonetically aligned us-
ing 3-state HMMs [12], and the F0 contours were extracted using
a 5-msec. frame rate. First- and second-order delta sequences were
computed using the operators δ1[y(n)] = y(n+ 1)− y(n− 1) and
δ2[y(n)] = 0.5y(n + 1) − 2y(n) + 0.5y(n − 1), and state-level
mean statistics for all 3 sequences aggregated using the state-level
alignments. The front-end module of a TTS engine was used to
extract a set of text-based features typically used for prosody pre-
diction in speech synthesis (e.g., phonetic identity, syllable counts,
etc.). Prior to neural-network modeling, all numerical features were
quantized, and each resulting categorical feature was re-encoded us-
ing One-of-N codes, bringing the final dimensionality of the input
(binary) vector to 240. All features values defined above the state
level were propagated down to the constituent states (with 3 states
per phone), and the resulting state-level predictors paired with the
state-level output streams to produce the modeling datasets.

4.2. Objective Evaluation and Model Selection

We explored a variety of NN structures and used the development
set to score the different approaches. A series of preliminary tests
demonstrated that features extracted from the deepest layer of the
network (one layer prior to the target) yielded consistently better
results than features extracted from lower layers of processing.
This is consistent with our expectations that deeper layers in a
NN manage to extract more structure from the input, and all re-
sults reported here correspond to features extracted from the third
layer of a 240(input) × 256 × 256 × X × 3(target) structure,
where X ∈ (64, 128, 256). The output target, driving the back-
propagation, consists of a 3-d vector containing the state-level
means of the log F0, as well as the means of the frame-level first and
second derivatives (i.e., delta sequences). The inclusion of the delta
sequences in the target vector has improved the log F0 prediction
metrics of the NN on its own, as well as of the GP model based on
the NN-transformed features.

Fig. 2 shows various objective metrics computed using a de-
velopment set after the NN deep-layer features for these 3 different
structures have been modeled with a GP. For comparison, the re-
sults of modeling the raw features directly (i.e., the inputs to the
NN are directly modeled with the GP, bypassing the NN modeling)
are also included. Each point marked on the curves corresponds to
adding another left and right state of predictive context to the cen-
ter state to form the input vector to the GP (recall that the NNs
are trained without any context). The x-axis on the plots corre-
sponds to the overall dimensionality after adding context dimGP =
(2 × Lctxt + 1) × dimX , where Lctxt = {0, 1, 2, · · · } is the con-
text size, and dimX is the dimensionality of the context-free feature
vector (64,128, 256 or, in the case of the raw features, 240). Mean
squared error (MSE) and cross-correlation (XCORR) are computed
between the state-level GP predictions and the corresponding dev-
set targets for any given model. The variance (VAR) and the log
likelihood are computed directly from the dev-set predictions (to put
these values in context, the observed natural variance of the dev set
is 0.0567).

6887



Fig. 2. Development-set metrics from the GP predictions as a func-
tion of GP input dimension (which is a function of context size).
Models built on different NN structures, and on the raw features, are
compared.

We can see that all the metrics improve, for any context size,
when a combination of deep-layer features with GPs is used instead
of directly modeling the input features with a GP, providing valida-
tion for the composite model. In terms of NN structures, we see that
the effect of reducing the dimensionality by pinching the deepest
layer too much, though marginally better for smaller context sizes,
eventually hurts as more slices of context are added. Of the struc-
tures considered, the 128-D structure provides a better trade-off and
reaches an optimal point around 13 slices of context (corresponding
to a GP input dimension of 3456). This is the model that we select
for further evaluation.

The metrics on the independent test (not used during training)
set are finally reported in Table 1 for the selected model (context of
13), and compared to the model with no context to illustrate the ef-
fect of added context. Metrics are also reported for the predictions
obtained with the NN structure directly at the output layer, without
including the GP model, to illustrate the added benefit of the GP.
Finally, all these figures are compared to the baseline decision-tree
predictive model that is used in the synthesis engine to generate F0
predictions. This model is a clustering tree with multi-space Gaus-
sian output distributions similar to the models described in [13] and
included in the HTS synthesis engine toolkit [14].

MSE VAR XCORR
Tree .0535 .0156 .3278
NN .0443 .0149 .4987
NN+GP0 .0443 .0156 .4976
NN+GP13 .0428 .0176 .5224

Table 1. Test set metrics. The full context-augmented model
(NN+GP13) is compared to the full no-context model (NN+GP0)
as well as to direct NN modeling and baseline (decision tree) model.
The natural variance of the test set is 0.0574.

4.3. Subjective Evaluation

The NN(128) + GP(13) model selected in the previous section was
evaluated against the baseline decision-tree model using a percep-
tual listening test and an AXB preference paradigm. Thirty different
text inputs were used to generate 30 pairs of samples, each sample
in the pair corresponding to a different F0-generation model, and
presented to 17 different subjects (11 male and 6 female; 13 native
speakers of North American English and 4 profficient in English)
in one of 4 distinct randomized arrangements (where both the or-
der of the text inputs and the order of presentation of the pairs were
randomized) for a total of 510 responses. Subjects were allowed
to listen to each sample in the pair (anonymized as Sample 1 and
Sample 2) as many times as needed before indicating whether they
preferred sample 1, sample 2, or neither. The distribution of the an-
swers is shown in Table 2. The perceptual differences between the

DTree NULL NN+GP
Counts 137 185 188
% 27 36 37

Table 2. Results of perceptual listening test showing preference to-
ward the different F0-generating systems. NULL indicates no pref-
erence.

systems were statistically evaluated by numerically re-encoding the
answers as [−1, 0,+1] and using Wilcoxon signed-rank test of the
null hypothesis that the data comes from a zero-mean distribution.
This hypothesis was rejected at the p < 0.01 level indicating that
the preference toward the proposed system, though modest, is sig-
nificant. As we can see, subjects indicate a preference toward one
of the two systems 64% of the time, and when they do, the majority
preference is toward the NN+GP system (58% vs. 42%). Put in a
different way, subjects found the proposed system to be the same as
or preferable to (i.e., no worse than) the baseline system 73% of the
time.

5. CONCLUSIONS

In this work we have presented and reported results on a new sta-
tistical approach to predict F0 targets in a text-to-speech system
that combines parametric and non-parametric techniques to offer im-
provements, both in terms of objective metrics and perceptual prefer-
ence, over the baseline decision-tree F0-prediction models currently
used in many standard synthesis systems. The parametric compo-
nent of the system exploits recent work in Deep Belief Networks
when training Neural Networks to extract high-level structure from
low-level inputs. These extracted features are then used as inputs
to a non-parametric, exemplar-based, Gaussian Process regression
model, which, as we have illustrated, shows good ability in handling
extended input contexts and improving as a result of it, leading to
a reduction in the prediction mean-squared error and an increased
variance indicating better expressivity.

6. AWKNOWLEDGMENTS

The authors would like to thank Tara Sainath for useful discussions
on DBN training, and Andy Aaron and Larry Sansone for their help
running the perceptual tests.

6888



7. REFERENCES

[1] G. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm
for Deep Belief Nets,” Neural Computation, vol. 18, pp. 1527–
1554, 2006.

[2] T. N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek,
P. Novak, and A. Mohamed, “Making Deep Belief Networks
effective for large vocabulary continuous speech recognition,”
in Proc. ASRU, Hawaii, 2011.

[3] G. Hinton, “A practical guide to training Restricted Boltzmann
Machines,” University of Toronto, Tech. Rep. 2010-003, 1996.

[4] C. Rasmussen and C. Williams, Gaussian Processes for Ma-
chine Learning. MIT Press, 2006.

[5] K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Ki-
tamura, “Speech parameter generation algorithms for HMM-
based speech synthesis,” in ICASSP, 2000, pp. 1315–1318.

[6] J. Quiñonero-Candela and C. Rasmussen, “A unifying view of
sparse approximate Gaussian process regression,” Journal of
Machine Learning Research, vol. 6, pp. 1939–1959, 2005.

[7] A. Sakurai, K. Hirose, and N. Minematsu, “Generation of F0
contours using a model-constrained data-driven method,” in
ICASSP, 2001, pp. 817–820.

[8] S. Vishnubhotlan, R. Fernandez, and B. Ramabhadran, “An
autoencoder neural-network based low-dimensionality ap-
proach to excitation modeling for HMM-based text-to-speech,”
ICASSP, vol. 2, pp. 4614–4617, March 2010.

[9] N. Pilkington, H. Zen, and M. Gales, “Gaussian process ex-
perts for voice conversion,” in Interspeech, 2011, pp. 2761–
2764.

[10] H. Park and C. Yoo, “Gaussian process dynamical models for
phoneme classification,” in NIPS 2011: Workshop on Bayesian
Nonparametrics, 2011.

[11] G. Henter, M. Frean, and W. Kleijn, “Gaussian process dy-
namical models for nonparametric speech representation and
synthesis,” in ICASSP, 2012, pp. 4505–4508.

[12] S. J. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev,
and P. Woodland, The HTK Book Version 3.4. Cambridge
University Press, 2006.

[13] Y. Yamagishi, H. Zen, T. Toda, and K. Tokuda, “Speaker-
independent HMM-based speech synthesis system – HTS-
2007 system for the Blizzard Challenge,” in Blizzard 2007,
2007.

[14] “HMM-based Speech Synthesis System (HTS),”
http://hts.sp.nitech.ac.jp/.

6889


