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ABSTRACT

In this paper, an automatic and unsupervised method based on
context-dependent hidden Markov model (CD-HMM) is proposed
for labeling the phrase boundary positions of a Mandarin speech
synthesis database. The initial phrase boundary labels are predicted
by clustering the durations of the pauses between every two prosodic
words in an unsupervised way. Then, the CD-HMMs for the spec-
trum, F0 and phone duration are estimated by a means similar to
the HMM-based parametric speech synthesis using the initial phrase
boundary labels. These labels are further updated by Viterbi de-
coding under the maximum likelihood criterion given the acoustic
feature sequences and the trained CD-HMMs. The model train-
ing and Viterbi decoding procedures are conducted iteratively until
convergence. Experimental results on a Mandarin speech synthesis
database show that this method is able to label the phrase bound-
ary positions much more accurately than the text-analysis-based
method without requiring any manually labeled training data. The
unit selection speech synthesis system constructed using the phrase
boundary labels generated by our proposed method achieves similar
performance to that using the manual labels.

Index Terms— speech synthesis, phrase boundary, unsuper-
vised labeling, context-dependent hidden Markov model, Viterbi
decoding

1. INTRODUCTION

A speech database with corresponding label information is the pre-
condition for constructing a speech synthesis system. A large-sized
and precisely labeled speech database can help improve the natural-
ness and intelligibility of the constructed speech synthesis system,
especially for the unit selection and waveform concatenation syn-
thesis method. Speech database annotation commonly consists of
phonetic segmentation and prosodic labeling. In terms of phonetic
segmentation, the text-analysis-based phoneme transcription and the
HMM-based segmentation techniques have already achieved good
performance [1, 2] and are widely adopted in practical systems. In
this paper we focus on the task of prosodic labeling. The defi-
nition of the prosodic labels varies with language. For Mandarin
speech synthesis, the prosodic labels refer to the prosodic bound-
aries. Among different levels of prosodic boundaries, the prosodic
phrase boundary tends to be the most difficult one for automatic and
manual labeling. In contrast to the prosodic word boundary which
can be precisely predicted from the text, the phrase boundary posi-
tions are more context-dependent and speaker-dependent. If they are
labeled manually, it is very time-consuming and difficult to guaran-
tee consistency among different annotators. Therefore, we investi-

gate methods of automatic phrase boundary labeling for Mandarin
speech synthesis in this paper.

Various methods have been proposed to achieve automatic
prosodic boundary labeling for speech synthesis databases. Most of
them are supervised classification based approaches [3–7], which
implies that a certain amount of manually labeled training data is
necessary for annotating each database. Several methods which
adopt unsupervised approaches can be found in [8–10]. Anan-
thakrishnan et al. [8] applied clustering algorithms to partition the
acoustic space into two classes and initialize the prosodic boundary
labels. These labels were used to train a MAP classifier and were
updated iteratively. Huang et al. [9] initialized the labels by some
lexical and acoustic cues and used these labels to train a GMM-
based prosodic break detector. Chiang [10] proposed a joint prosody
labeling and modeling method which determined the prosodic labels
and built the prosodic models simultaneously. In this approach, the
initial labels were determined by a decision tree which was designed
based on prior knowledge of prosodic breaks. After the parameters
of the prosodic models were estimated, the prosodic labels were
updated iteratively.

In this paper, an unsupervised prosodic phrase boundary label-
ing method is proposed, which uses the context-dependent hidden
Markov model (CD-HMM). A similar structure using a supervised
approach has previously been shown to be effective by the authors
[11, 12]. We now extend the method to suit an unsupervised condi-
tion in this paper. The CD-HMMs of the spectrum, F0, and phone
duration are firstly trained without the context information of the
prosodic phrase boundaries. Then a state alignment to the acoustic
features is performed using the trained models to get the pause dura-
tions between every two prosodic words. These pause durations are
further normalized according to the context-dependent phone dura-
tion distributions. The initial phrase boundary positions are labeled
by unsupervised clustering of the normalized pause durations. After
the initial labels are given, the CD-HMMs are re-estimated and the
phrase boundary labels are updated by Viterbi decoding under the
maximum likelihood criterion. The model training and the Viterbi
decoding procedures are executed iteratively until the labeling re-
sults converge. In contrast to the methods in [8,9] where the prosodic
boundary type at each prosodic word boundary was determined in-
dependently, our proposed method adopts the Viterbi decoding ap-
proach to decide the boundary types of all prosodic word boundaries
simultaneously. Different from [10], the influence of the known con-
text information on the acoustic features is considered during initial-
ization and extra prosodic models are not necessary in our proposed
method.

This paper is organized as follows. In Section 2, the proposed
unsupervised prosodic phrase labeling method is introduced. Sec-
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Fig. 1. Flowchart of the initialization step in our proposed method.

tion 3 reports the objective and subjective experimental results and
Section 4 gives the conclusions.

2. METHODS

2.1. Prosodic labeling of Mandarin speech synthesis database

In Mandarin speech synthesis systems, a three-level structure for de-
scribing the prosodic characteristics of an utterance is commonly
adopted, which consists of prosodic word, prosodic phrase and sen-
tence levels [13]. For each utterance in the speech database, the
boundary positions of these three levels need to be labeled manually
or automatically. Among them, the prosodic phrase boundary is the
most difficult one for labeling. It is strongly context-dependent and
speaker-dependent and cannot be simply predicted from the text like
the prosodic word boundary. For manual labeling, it is very time-
consuming when a large speech database is used and it is difficult to
guarantee the consistency among different annotators. Thus, an au-
tomatic and unsupervised prosodic phrase boundary labeling method
using CD-HMM is presented in this paper.

2.2. Unsupervised prosodic phrase boundary labeling

Our proposed method contains three main steps, which are initial-
ization, model training, and prosodic labeling. Fig. 1 and Fig. 2
show the flowcharts of these steps, in which the model training and
prosodic labeling steps are conducted iteratively.
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Fig. 2. Flowchart of the model training and prosodic labeling steps
in our proposed method.

2.2.1. Initialization

In the initialization step, the initial labels of the prosodic phrase
boundaries are obtained without human intervention in preparation
for the following iterative model training and prosodic labeling.
Once the prosodic word and sentence boundaries are given, this
becomes an unsupervised two-class classification problem. It is
judging whether each prosodic word boundary should be a prosodic
phrase boundary or not. The pause durations at the prosodic word
boundaries are extracted as the features for classification in our
method because of the phonetic knowledge that the prosodic phrase
boundary tends to span much longer pauses than the prosodic word
boundary.

As shown in Fig. 1, a text analysis module is adopted to deter-
mine the phonetic and prosodic labels excluding the phrase bound-
ary positions for each utterance in the speech database. In order to
extract the pause duration at each prosodic word boundary, a sym-
bol “sp” is inserted at the end of the phoneme transcriptions of each
prosodic word. The CD-HMMs of the spectrum, F0 and phone du-
rations are trained without using the context information about the
prosodic phrase boundaries. The duration of “sp” at the end of each
prosodic word is obtained by performing a state alignment to the
acoustic features using the training models. Considering that other
context information besides the prosodic boundary type may also af-
fect the duration of these short pauses, a normalization is applied,
according to the trained context-dependent phone duration distribu-
tions.

d̂sp =
dsp − µ
σ

, (1)

where dsp and d̂sp are the pause durations before and after normal-
ization respectively; µ and σ stand for the mean and standard de-
viation of the corresponding duration distribution given the context
information of the pause. Then a k-medians clustering algorithm is
applied to partition the prosodic word boundaries into two classes
according to the pause durations. The boundaries belonging to the
class with longer pauses are initialized as the prosodic phase bound-
aries, while the other ones are kept as the prosodic word boundaries.

6876



2.2.2. Model training

The model training procedure here is similar to that for HMM-
based parametric speech synthesis [14]. Firstly, acoustic features
are extracted from the speech waveforms. The feature vector for
each frame consists of static, delta and delta-delta components of
spectral parameters and F0. The context-dependent HMMs are es-
timated under the maximum likelihood criterion according to the
extracted acoustic features and the context information derived from
the database labels. The spectrum part is modeled by a continuous
probability distribution and the F0 part is modeled by a multi-space
probability distribution (MSD) [15]. A decision tree based model
clustering method using the minimum description length (MDL)
criterion is applied in the context-dependent HMM training to avoid
the data-sparsity problem. Then each utterance in the training
database is segmented into states by Viterbi alignment using the
trained acoustic HMMs. Based on the results of state segmenta-
tion, context-dependent phone duration models are estimated using
the same decision-tree-based model clustering technique. Table 1
lists the context features used in the model training. Compared to
HMM-based parametric speech synthesis, the number of the context
features is reduced here in order to control the complexity of the
following Viterbi decoding step [12].

Category Context features
Phone Groups {current, next} phone
Tone Groups the tone of {previous, current, next} syllable

Boundary Groups the prosodic boundary type at current syllable

Table 1. The context features used in the CD-HMM training.

2.2.3. Prosodic labeling

The basic idea of the prosodic labeling step is similar to the auto-
matic speech recognition (ASR) problem. It can be expressed as

C∗ = argmax
C

P (O|λ, Cg, C)P (C), (2)

where O stands for the acoustic features extracted from the speech
waveforms of an utterance; λ denotes the trained CD-HMMs; Cg

represents the known phonetic and prosodic labels and C stands for
the prosodic labels that are expected to be labeled, i.e., the prosodic
boundaries in this paper. Once C is determined, it can be combined
with Cg to generate the context features listed in Table 1 and calcu-
late the output probability P (O|λ, Cg, C) of the acoustic features
for the CD-HMMs. P (C) denotes a prior distribution of the un-
known labels without observing any acoustic features. In this paper,
we ignore this prior distribution and (2) can be simplified as

C∗ = argmax
C

P (O|λ, Cg, C). (3)

The Viterbi decoding algorithm in ASR [16] is adopted here to solve
(3). A “word graph” representing all possible prosodic labeling re-
sults is firstly constructed for each utterance based on the known
phonetic and prosodic labels and the possible values of the unknown
labels. Then a two-pass Viterbi decoding strategy is applied. The
N-best paths of each utterance are firstly obtained by Viterbi decod-
ing using the CD-HMMs of the spectrum and F0 features. Then,
these N hypotheses are rescored using the context-dependent mod-
els of the phone duration. After that, the phrase boundary labels of
the utterance can be derived from the best path in the “word graph”.

Once all the utterances in the speech database are processed, a
new model training procedure is conducted using the updated phrase
boundary labels. The model training and Viterbi decoding proce-
dures are conducted iteratively until the phrase boundary labeling
results converge.

3. EXPERIMENTS

3.1. Experimental conditions

A Mandarin speech synthesis database containing 13,000 utterances
was used in our experiments. The prosodic boundaries of all these
utterances were labeled by experienced annotators. Besides the man-
ual labeling results, three sets of phrase boundary labels were gener-
ated and compared in our experiments.

• Text-based labeling. A C4.5 decision tree based classifier
was constructed using Weka tools [17] to determine whether
each prosodic word boundary should be a phrase boundary.
All of the features used for classification came from the out-
put of text analysis, such as the POS and the number of syl-
lables in a prosodic word. The training set was composed of
20,000 utterance with manual phrase boundary labels.

• CD-HMM-based supervised labeling. 1,000 utterances
were picked up from the speech database. 900 of them with
manual phrase boundary labels were used for the model
training as introduced in Section 2.2.2. The remaining 100
utterances were used as a test set for the objective evaluation.
Finally, the phrase boundary positions of all utterances in the
database were labeled by Viterbi decoding using the trained
model.

• CD-HMM-based unsupervised labeling. The same 1,000
sentences as the CD-HMM-based supervised labeling were
used for the unsupervised model training. After the initial-
ization of phrase boundary labels, the iterative model training
with Viterbi decoding was started. Here a two-pass Viterbi
decoding strategy was applied. The 40-best paths of each
sentence were firstly obtained by Viterbi decoding using the
CD-HMMs of the spectrum and F0 features. These 40 hy-
potheses were rescored using the context-dependent models
of the phone duration. Then, the updated phrase boundary la-
bels of the utterance could be derived. After six iterations, the
phrase boundary labels and the CD-HMMs converged. The
converged CD-HMMs were applied to label all utterances in
the database.

In both the supervised and unsupervised labeling, the speech wave-
forms were sampled at 16kHz. The acoustic parameters were ex-
tracted by STRAIGHT [18], including 40-order line spectral pairs
(LSP) and F0. A 5-state left-to-right HMM structure was adopted to
train the context-dependent models, where a single Gaussian distri-
bution was used for each HMM state.

3.2. Objective evaluation

We performed an objective evaluation among these methods by com-
paring their labeling results with the manual labels on a test set. F-
score was chosen here as the measurement. The test set consisted
of 100 sentences, which were not included in the training set of the
supervised labeling but were used during the iterative model training
of the unsupervised labeling. We consider this to be reasonable be-
cause the manual labels are not required for the unsupervised label-
ing and all the utterances in the database can be used for the iterative
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model training. The manual labels were determined by the voting
results among three annotators. Table 2 lists the F-scores of differ-
ent methods. From this table, we can see that the initial labels of the
CD-HMM-based unsupervised approach is much higher than that of
the text-based approach. This indicates the importance of acoustic
cues in determining the phrase boundary positions for a speech syn-
thesis database. After iterative model training, the F-score of the
unsupervised labeling increases from 62.73% to 72.51%, which is
close to the results of the CD-HMM-based supervised labeling. This
is a satisfactory result when compared with the consistency among
different human annotators. In our experiments, the average F-score
among the three annotators is 75.83% on the test set.

Method F-score(%)
Text-based 49.22

Supervised CD-HMM 76.09
Unsupervised CD-HMM(initial) 62.73

Unsupervised CD-HMM(converged) 72.51

Table 2. The F-scores of phrase boundary labeling on the test set for
different methods.

3.3. Subjective evaluation

Four speech synthesis systems were constructed using the manual
phrase boundary labels, and the results of the three automatic label-
ing methods listed in Section 3.1. The HMM-based unit selection
speech synthesis approach [19] was followed and all the 13,000 sen-
tences were used for these systems. Twenty sentences, which were
not included in the database, were synthesized by the four systems
respectively. These sentences were evaluated by 8 listeners. Each
listener was required to give a score from 1 (bad) to 5 (good) on the
naturalness of each synthetic sentence. The average mean opinion
scores (MOS) for these systems were shown in Fig. 3.1 From Fig.
3, we can see that the quality of the phrase boundary labeling plays
an important role in the performance of a Mandarin speech synthesis
system using the unit selection approach. The difference of natural-
ness between the systems using the text-based labeling method and
the other three methods is significant, but no significant difference
is observed among the systems using those three methods(Tukey’s
HSD test at α ≤ 0.01). That is to say, the systems using the prosodic
labels given by the CD-HMM-based supervised and unsupervised la-
beling methods are both comparable to the one constructed using the
manual labels.

4. CONCLUSIONS

In this paper, an unsupervised prosodic phrase labeling method has
been proposed for Mandarin speech synthesis database. The phrase
boundary labels are initialized by unsupervised clustering of the
pause duration between every two prosodic words. Then, CD-HMM
training and Viterbi decoding are conducted iteratively to refine the
acoustic models and the labeling results. The objective evaluation
results have shown that this method can achieve satisfactory phrase
boundary labeling performance without requiring any manual labels.
Also, the unit selection speech synthesis system constructed using
the labels given by our proposed method is comparable to the one

1Some examples of the synthetic speech are available at
http://home.ustc.edu.cn/˜yangcy/USProsodyLabeling/
demo.html.
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constructed using manual annotations. To extend this method to
other languages and prosodic labels will be the tasks of our future
work.
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