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ABSTRACT 

 

Phonotactics, dealing with permissible phone patterns and their 

frequencies of occurrence in a specific language, is acknowledged 

to be related to spoken language recognition (SLR). With the 

assistance of phone recognizers, each speech utterance can be 

decoded into an ordered sequence of phone vectors filled with 

likelihood scores contributed by all possible phone models. In this 

paper, we propose a novel approach to dig the concealed 

phonotactic structure out of the phone-likelihood vectors through a 

kind of multivariate time series analysis: dynamic linear models 

(DLM). In these models, treating the generation of phone patterns 

in each utterance as a dynamic system, the relationship between 

adjacent vectors is linearly and time-invariantly modeled, and 

unobserved states are introduced to capture a temporal coherence 

intrinsic in the system. Each utterance expressed by the DLM is 

further transformed into a fixed-dimensional linear subspace so 

that well-developed distance measures between two subspaces can 

be applied to linear discriminant analysis (LDA) in a dissimilarity-

based fashion. The results of SLR experiments on the OGI-TS 

corpus demonstrate that the proposed framework outperforms the 

well-known vector space modeling (VSM)-based methods and 

achieves comparable performance to our previous subspace-based 

method. 

 

Index Terms— phonotactic language recognition 

 

1. INTRODUCTION 
 

Nowadays, there are about 7100 distinct living languages spoken 

around the world. Due to the globalization, communication 

between different races or countries is becoming a more and more 

important issue. The springing up of a variety of multi-lingual 

services brought about the birth of automatic spoken language 

recognition (SLR), which is the process of identifying or verifying 

the language spoken in a speech utterance by means of a computer, 

and has appealed to many researchers to explore for more than 

twenty years. Typically, SLR techniques fall into two major 

categories according to the level of information that machines can 

use to distinguish one language from another [1]. At the acoustic 

level, a series of frames, each containing 80-200 ms temporal 

information, such as mel-frequency cepstral coefficients (MFCCs) 

or shifted delta cepstral (SDC) features [2], is derived from raw 

speech through speech parameterization processes. These acoustic 

frames are directly fed into back-end models, such as Gaussian 

mixture models (GMMs) [3], to form a vector-like representation 

for each utterance. In contrast, phonotactic approaches exploit 

phone recognizers to further convert acoustic frames of an speech 

utterance into a phone sequence to capture longer-term information. 

It is supposed that if phonotactic constraints, e.g., permissible 

syllable structures or phone pattern combinations, across languages 

for each speech utterance can be found out or stochastically 

described, the characteristics of each language will be well 

modeled [4], and much better recognition performance will be 

potentially gained. 

       Up to the present, various implementations to deal with 

phonotactic features have been proposed, from the use of several n-

gram language model-based phonetic decoders for each single 

language (PPR) [5], the use of a single phonetic decoder followed 

by the computation of language dependent phone n-gram 

likelihoods (PRLM) [6], to the use of paralleled single-language 

phonetic decoders followed by a phone n-gram classifier (PPRLM) 

[7]. Some researchers have looked into a language-independent 

phone recognizer using a set of universal acoustic units or phones 

that is common for all languages. Along with the usage of the 

universal phone set (UPS), a new paradigm for modeling 

phonotactic constraints, namely vector space modeling (VSM), has 

been developed [8]. Stemming from the well-known VSM 

framework in the field of information retrieval (IR), Li et al. built a 

composite feature vector for each utterance by concatenating the 

vector-formed statistics from phonetic decoders, and applied 

support vector machines (SVM) to the composite vectors for 

classification [8]. In their work, each of phone or sound sequences 

was represented by a high dimensional phonotactic feature vector 

with the n-gram counts or term frequency-inverse document 

frequency (TF-IDF) weights, whose dimensionality is equal to the 

total number of phonotactic patterns needed to characterize the 

structure of the utterance given by a decoder. Moreover, 

Penagarikano et al. took time alignment information into account 

by considering time-synchronous cross-decoder phone co-

occurrences [9]. They have thus defined a new concept of multi-

phone labels, which attempts to integrate the contributions given 

by several decoders frame by frame and form a VSM-based label 

sequence different from the conventional n-gram patterns. 

        From the perspective of data representation, VSM has merits 

to well serve the back-end learning mechanism like SVM or GMM 

by transforming each varying-length phone sequence into a fixed-

length vector. Nevertheless, more phonotactic attributes, such as 

bigram and trigram terms, have to be included to form a much 

higher dimensional vector, so as 1) to settle the order-losing issue 

that the sequential order of the phones in a decoded utterance is 

lost, and 2) to relax the assumption that unigrams (single phones) 

are statistically independent to some extent. Since the total number 

of n-gram patterns tends to increase exponentially with respect to n, 

n is often inevitably limited to 3 (trigram) or 4 (4-gram) with 

discriminative selection of the n-grams [10]. Practically, it is 

necessary to apply dimension reduction approaches, such as latent 

semantics analysis (LSA) [8] and principal component analysis 

(PCA) [11], on the original VSM-based feature vectors to make the 

classification task more efficient and to avoid “the curse of 

dimensionality” while training data are deficient. Recently, 

stemming from the idea of “i-vectors”, which has provided 
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superior performance in the speaker recognition field [12], some 

researchers have used probabilistic PCA (PPCA) to transform each 

high-dimensional vector filled with discrete features into a small-

size set of latent variables corresponding to a high variability 

subspace [13-15, 30]. For example, in [13] and [14], Soufifar et al. 

used the subspace multinomial model, along with the maximum 

likelihood criterion, to effectively represent the information 

contained in the n-grams.  

        In this paper, as an extension of our previous subspace-based 

work in [16], we propose a new approach for data representation, 

in which the phonetic information as well as the contextual 

relationship can be more abundantly retrieved by likelihood 

computation and dynamic linear models, given a universal phone 

recognizer. In the VSM framework, the count or frequency of a 

phonotactic term is the only attribute that is concerned. In contrast, 

our approach enables us to look much farther and deeper through 

the decoder’s eyes without much more memory. That is, not only 

can more information, such as likelihood scores of any phone 

segments, be captured, but also all possible phones can be taken 

into account instead of the single most likely one. The spirit is 

somewhat similar to the employment of phone lattices [17] or 

posteriogram-based n-gram counts [15]. Moreover, our 

representation also fits for the back-end classification. Under the 

assumption that the utterance representation can be approximately 

described by a collection of lower dimensional linear subspaces, a 

suitable dissimilarity-based learning algorithm along with the well-

surveyed Projection metric are introduced for classification. 

        The remaining of this paper is organized as follows. In 

Section 2, we introduce the new representation of a speech 

utterance in the sense of dynamic linear models. In Section 3, we 

present the learning and scoring mechanisms for subspaces with 

the Projection metric. Section 4 gives the evaluation results and 

some discussions. Finally, conclusions and future work are 

outlined in Section 5. 

 

2. SUBSPACE-BASED REPRESENTATION 
 

According to the definition in [19, p. 3, 20], subspace-based 

learning is based on the extraction of the most conspicuous 

properties of each class separately, as represented or spanned by 

vector series expansions constructed from the feature vectors of 

each class. The learning mechanism focuses on how to measure the 

similarity between each subspace and a given data point. However, 

most widely-alleged subspace-based methods for the SLR tasks, 

such as i-vectors and PCA, do not fall into this definition. On the 

contrary, their goal is to derive a coordinate representation (or a 

vector-like point) for an utterance in a lower-dimensional linear 

space where all projected utterances are supposed to share the 

same set of bases. In contrast, we will introduce a new approach to 

represent each utterance as a subspace of the original feature space, 

where the salient structure of each utterance can be preserved. 

 

2.1. Phone-likelihood vectors 
 

Given the observed sequence of acoustic feature vectors         

derived from a speech utterance, a phone decoder singles out the 

best phone sequence         based on Viterbi decoding which 

finds the most likely time alignment path through a huge 

probabilistic network. The main task of phonotactic-based 

language classifiers is to take advantage of the phone sequence 

        as a basic unit for SLR. The basic idea behind our 

proposed phonotactic data representation is to take the single-best 

phone sequence given by the phone decoder as a kind of clusters 

toward the acoustic feature vectors in a phonotactic fashion. From 

the example in Figure 1, we can see that after phone decoding and 

time alignment, feature vectors {        } belong to top-1 phone 

   while feature vectors {           } belong to top-1 phone   . 

Along this vein, given phone boundaries, each set of acoustic 

vectors in its corresponding phone segment is further used to 

derive a more meaningful phonotactic feature vector built up with 

the average log-likelihood score for each phone, which is 

characterized by a hidden Markov model (HMM), through the 

Viterbi search algorithm. Consequently, each phone segment (or 

phone frame)    is expressed by a phone-likelihood vector   , 

whose dimensionality is the size of the universal phone set {  }. 
Figure 1 also shows that the first phone   , which is most likely 

labeled as   , indeed has the highest log-likelihood score of -14 

with respect to the first attribute    due to the nature of dynamic 

programming contributed by the first three acoustic feature vectors 
{        }. As for other attributes   ,   , and    in   , although 

their scores might be much smaller than the single-best   , and 

even    might never appear in the single best phone sequence, they 

are not cast off but included into the phone-likelihood vector    to 

bring more uncertainty or information that might be helpful for 

classification. 

 

2.2. Dynamic linear models 
 

After the aforementioned procedure, each utterance is expressed by 

a sequence of phone-likelihood vectors, which is more than just a 

set of vectors due to the temporal information, especially 

phonotactic constraints, contained in the sequence. To capture the 

temporal dynamics, we make a conjecture that each sequence was 

generated by a causal linear time-invariant (LTI) system, which 

might be a sub-system pertaining to some language production 

system. This conjecture is similar to the acoustic theory of speech 

production that assumes the speech production process to be a 

linear system, consisting of a source and filter [29]. A multivariate 

dynamic linear model (DLM), also known as a state space model, 

is one of causal LTI systems, which has been used to model 

moving human bodies or textures in computer vision [21] and 

signal analysis [22]. A simpler DLM to model the phone-

likelihood sequence is described as follows. 

Figure 1. Phone-likelihood vector extraction for an SLR system 

with four universal phones {           }. 
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        Let   {  }              be a sequence of   phone-

likelihood vectors for an utterance, where   denotes the size of the 

universal phone set, and {  }              be unobservable 

vectors representing the state of the system, where     denotes 

the system complexity or the state order. Then a DLM is specified 

by the following equations: 

               (   ); (1) 

                 (   ), (2) 

 

where   ’s and   ’s are evolution vectors and observation error 

vectors, respectively, which can be taken as additive noises with 

zero-mean Gaussian distributions. The matrices        and 

       are the system transfer operators that need to be 

estimated. To learn the dynamic system amounts to identifying the 

model parameters   and  , while both   and   are often assumed 

to be identity matrices         and         for simplicity. It 

is commonly assumed that the distribution of the input sequence 
{  }        is known, so that we can use maximum likelihood 

estimation (MLE) to infer the states {  }        and to estimate the 

parameters from the observed sequence {  }        by the 

expectation-maximization (EM) algorithm. However, in this paper, 

we adopt an alternative approach, which is based on reconstruction 

error minimization for (1) and (2) to estimate the parameters and 

can be proven to be asymptotically efficient approaching the ML 

solution. 

        Without any iterative procedures, the sub-optimal, closed-

form, and fast solution starts with the singular value decomposition 

(SVD) of the observed sequence {  }       . Let        be the 

SVD of  , then   is a     diagonal matrix containing the largest 

d singular values         while        and        are 

matrices, whose orthonormal columns {  }        and {  }       

approximately span the column and row spaces of  , respectively. 

The unique parameters   and  , and the states   
            

can be sequentially estimated by 

 ̂   , (3) 

 ̂ 
     , (4) 

 ̂         ∑ ‖ ̂      ̂ ‖
    

   . (5) 

If   ̂     ̂     and   ̂     ̂   are expressed by  ̂ 
    

   (   ) and  ̂ 
     (   ), respectively, we can see that (5) is 

actually a problem of linear regression with least-squares 

estimation, which leads to a closed-form estimation of   as: 

 ̂   ̂ 
  ̂ 

    
( ̂ 

    ̂ 
    

)  , (6) 

From (3) and (6), we derive  ̂ and  ̂ for each utterance, which can 

be seen as a compact and decoder-recognized representation.   

 

2.3. Distance between two linear models 

 
In [23], Cock and Moor described how to measure the distance 

between any two DLM models. For two utterances, given their 

corresponding DLM estimates  ̂  and  ̂ , their subspace-based 

representations can be respectively expressed by  

   [ ̂ 
  ( ̂  ̂ )

  ( ̂  ̂ 
 )    ( ̂  ̂ 

 ) ]
 

, (7) 

   [ ̂ 
  ( ̂  ̂ )

  ( ̂  ̂ 
 )    ( ̂  ̂ 

 ) ]
 

, (8) 

 

where        (  )   and   denotes not only the state order but 

also the size of the contextual window. For example,     means 

the subspace contains information of any three consecutive phones.  

        Note that the representation may not be unique since (1) and 

its solutions (3) and (4) are invariant to any coordinate 

transformations. Therefore, if we consider the linear span of the 

column vectors of    instead of the matrix    itself to represent the 

dynamical system, the distance measurement between    and    

must be also invariant to such transformations. In this paper, under 

the assumption that    and    are equivalent if and only if 

    (  )      (  ) , we adopt the Projection metric as a 

reasonable distance measure between two subspaces    and    of 

two utterances [18], which is defined by 

     (     )  (  ∑       
 
   ). (9) 

 

      is the cosine of the k-th principal angle between     (  ) 

and     (  ), also known as the k-th canonical correlation [24], 

which is further defined by 

                (  )        (  )(     ), (10) 

 

subject to ‖  ‖  ‖  ‖   , and               (  
           ). Since    and    both have linear independent 

columns,       can be easily derived through the SVD of   
   , 

  
     (    )  , where          (             ) 

([25], p. 604). 

 

3. DISSIMILARITY-BASED LEARNING SCHEME 
 

Since the subspace-based pattern (7) is not suitable for classifiers 

designed only for vectorial inputs, we need a dissimilarity-based 

learning algorithm that depends only on the distance metric (9) to 

discriminate utterances for the training and detection phases, which 

is briefly summarized as follows [26]: 

1) In the training phase, we first construct the dissimilarity matrix 

      , where   denotes the total number of training 

utterances, and each entry       corresponds to the dissimilarity 

between the pair of utterances (subspaces) i and j computed 

through the Projection metric (9). Thus, the i-th row of  ,   , 

represents a new n-dimensional feature vector (called the 

dissimilarity vector) of utterance   (       ). 

2) In order to discriminate utterances of different languages, we 

perform linear discriminant analysis (LDA) on all the training 

dissimilarity vectors according to their language labels, and 

derive a projection matrix   and the transformed mean vector 

   for language    (       ). 

3) In the test phase, we represent each test utterance (subspace) as 

a dissimilarity vector by using the same measure against all the 

training utterances (subspaces). 

4) We then project the test dissimilarity vector by   to form a 

lower-dimensional vector  , and thus achieve the 

classification through invoking a classifier built in the 

dissimilarity space. 

In the final scoring stage, assuming that the prior probabilities of 

all the target languages are equal, the decision score between a 

target language      and the test utterance       can be expressed 

based on the log-posterior probability and computed by 

 

             (          )    (          )  ∑  (        )
 
   , 
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where  (     )  (     )  
  (     ), and    denotes the 

within-class covariance matrix derived in the projective space. 

 

4. EXPERIMENTS 
 

We conducted the language verification task on the Oregon 

Graduate Institute Multi-language Telephone Speech (OGI-TS) 

Corpus [27], which contains the speech of 10 languages: English, 

Farsi, French, German, Japanese, Korean, Mandarin, Spanish, 

Tamil, and Vietnamese. The corpus is divided into three parts: 

4650 utterances for training, 1899 utterances for development, and 

1848 utterances for test. Some test utterances with lengths ranging 

from 2 to 4 seconds are culled to form the 3-s set to evaluate the 

system performance for short utterances, while all test utterances 

form the 1-to-50-s set. Besides, the corpus also includes 619 

“story-before-tone” utterances, which have manually generated 

fine-phonetic transcriptions that can be used for supervised phone 

modeling for six languages.  

        A universal phone recognizer (UPR), which is composed of a 

set of language-independent context-independent phone models, is 

used in the experiments. Each phone model models a phone in the 

universal phone inventory of size 69, which is a union of the 

phones appearing in the 619 transcription files, with the phones 

sharing the same manner and place merged into one. Each phone 

model is a 3-state left-to-right CD-HMM with 32 Gaussian mixture 

components per state. The acoustic feature vector has 39 attributes 

comprised of 13 MFCCs including C0, along with their first and 

second order derivatives. According to the procedure shown in [8], 

all phone models were trained and refined from the 619 phone-

transcribed utterances and the 4650 training utterances according 

to the maximum likelihood criterion, respectively. 

        Given the same UPR, we compared the proposed method with 

two well-known VSM-based methods, namely UPR-VSM [8] and 

UPR-IVCT [13], and one subspace-based method, UPR-CONCAT 

[16]. For UPR-VSM, a phone sequence is represented by a 

(          )  dimensional vector consisting of the TF-IDF 

values of unigram, bigram, and trigram phonotactic patterns. 

Latent semantic indexing (LSI) was further used for extracting 

2000-dimensional key features needed for discriminating 

utterances from the statistics of some salient units and their co-

occurrences. However, in UPR-IVCT, only unigram and bigram 

phonotactic patterns were used in the multinomial subspace model 

to train the 700-dimensional i-vector of each utterance [28]. 

Instead of the DLM mentioned in Section 2.2, UPR-CONCAT 

models the phonotactic information within an utterance by simply 

concatenating the phone-likelihood vectors belonging to a fixed-

length sliding window centered on a current vector, whose size was 

set to be 3 in our experiment. All of the above parameter settings 

were determined by the experiments on the developing data set. 

        To make fair comparisons, in the back-end classification, we 

used LDA and its corresponding scoring technique mentioned in 

the end of Section 3 in all of the four methods. From Figure 2 and 

Table 1, we can see that when    , UPR-DLM outperforms two 

VSM-based methods, UPR-VSM and UPR-IVCT, in terms of the 

equal error rate (EER) nearly on both data sets, and achieves 

comparable performance to UPR-CONCAT on the 1-to-50-s data 

set. Some possible reasons why UPR-DLM performs worse than 

UPR-CONCAT lie in that, 1) the language production process we 

attempt to model may have some nonlinearity effects that linear 

systems cannot fully describe; 2) the compact solutions of model 

parameters shown in (3) and (6) may not be close enough to the 

true solutions although the computation is efficient; 3) in UPR-

CONCAT, SVD acts as a robust subspace generator that allows for 

high discrimination against noise contamination even when the 

phone decoder is not reliable, but UPR-DLM lacks this kind of 

operations. 

        Figure 3 shows the EER with respect to the state order ( ). 

We can see that the minimal ERR is achieved when    , which 

means that the phonotactic information contained in 4 consecutive 

phone-likelihood vectors are considered. Compared with the 

results of UPR-CONCAT, it seems to imply that the maximum size 

of phonotactic constraints can be set to 3 (trigram) or 4 (4-gram) in 

most of the phonotactic SLR tasks. 

 

5. CONCLUSIONS 
 

This paper presents a new phonotactic feature representation based 

on dynamic linear models and subspace formulation for automatic 

spoken language recognition. On the basis of the representation, 

the combination of the dissimilarity-based learning algorithm and 

LDA has been shown to perform well. In our future work, we plan 

to remedy the flaws found in the proposed framework and evaluate 

it on the NIST LRE corpora. Other nonlinear subspace-based 

methods will also be investigated, implemented, and compared in 

the experiments. 

Methods 1-to-50-s data set 3-s data set 

UPR-VSM 15.12 19.81 

UPR-IVCT 18.62 23.48 

UPR-CONCAT 10.68 16.78 

UPR-DLM 12.09 20.58 

Figure 3. EER with respect to d, the state order, in 

UPR-DLM on the 3-s and 1-to-50-s OGI-TS data 

sets. 

Figure 2. DET plots for two VSM-based and two subspace-based 

approaches on (a) the 3-s and (b) the 1-to-50-s OGI-TS data sets.  
Table 1. EER (%) for various phonotactic approaches on the 3-s 

and 1-to-50-s OGI-TS data sets. 
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