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ABSTRACT

Distribution mismatch between training and test data can
greatly deteriorate the performance of language recognition.
Some effective methods for compensation have been pro-
posed, such as nuisance attribute projection (NAP). In real-
world applications, there are often sufficient training samples
from a different domain and only a limited number of labeled
training samples from target domain, performance of a system
will be degraded and needs to be further improved. In this pa-
per, we introduce transfer learning to solve this problem. We
propose a novel transfer learning algorithm referred to as sim-
plified domain transfer multiple kernel learning (SDTMKL).
Our aim is to discover a good representation of feature space
that minimizes the distribution mismatch between samples
from the source and target domains. Robust models can be
learned in this suitable feature space. Results on a NIST
language recognition task show that the SDTMKL method is
quite effective and can further improve system performance
when combined with NAP.

Index Terms— Transfer Learning, Language Recogni-
tion, Support Vector Machine, Multiple Kernel Learning.

1. INTRODUCTION

A major assumption in many conventional machine learning
algorithms is that the training and test data are drawn from the
same feature space and the same distribution. When the distri-
bution changes the model needs to be rebuilt from scratch us-
ing newly collected training data, otherwise the performance
of the algorithm will be greatly deteriorated by the distribu-
tion mismatch. At the same time, it is nearly impossible to get
robust models using only a limited number of newly labeled
training samples which match the distribution of the test data.

This work was supported by the NSFC under grant No. 61273268, No.
61005019, No. 90920302 and project KZ201110005005 supported by Bei-
jing Natural Science Foundation Program.
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In real-world applications, however, it is quite expensive and
time consuming to collect sufficient newly labeled training
data.

In language recognition, we face the same problem. Mis-
match between train and test conditions is usually due to
variability from changes in channel, environment and other
factors. It is quite crucial to reduce this mismatch. Recent
years, some effective algorithms have been applied to this
task and have considerably improved the performance of lan-
guage recognition systems. One of the most popular methods
is nuisance attribute projection (NAP) [1] which is a typi-
cal subspace method for model compensation. It has been
widely used in language and speaker recognition and shown
promising results. Usually, we need a large amount of la-
beled samples having the same feature space and distribution
as that of test data to train NAP projection in order to get good
performance. However, this demand can not always be met.
In real-world applications, there are often sufficient training
samples from a different domain and only a limited number
of newly labeled training samples from the target domain,
performance of a system will be degraded and needs to be
further improved.

Recently, transfer learning (or cross-domain learning) has
emerged as a new learning framework to address this kind of
problems [2]. It can train relatively robust models with only a
limited number of labeled data from target domain and a large
amount of labeled training data from source (or auxiliary) do-
main. There is increasing research interest in it and some
new methods have been proposed and successfully used in
some real-word applications, such as object category recog-
nition [3], WiFi localization [4]. Very recently, a novel algo-
rithm referred to as domain transfer multiple kernel learning
(DTMKL) [5] has been proposed. It simultaneously learns a
kernel function and a robust classifier by minimizing both the
structural risk function and the distribution mismatch between
the samples from the source and target domains.

In this paper, we introduce transfer learning into language
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recognition to solve the problem mentioned. We simplify the
DTMKL algorithm and name it as simplified domain trans-
fer multiple kernel learning (SDTMKL). It takes advantage
of the form of multiple kernel learning (MKL) [6] in order to
discover a suitable higher feature space minimizing the distri-
bution mismatch between data from different domains. We ef-
fectively combine it with NAP and robust models are learned
under this framework. The performance of system is further
improved.

The outline of the paper is as follows. In section 2, we
briefly introduce the criteria referred to as Maximum Mean
Discrepancy (MMD) which is used to compare data distribu-
tions. In section 3, we briefly describe the MKL. Section 4
illustrates the SDTMKL method. In section 5, we demon-
strate the potential of the approach by applying it to language
recognition task.

2. MAXIMUM MEAN DISCREPANCY

Let us denote the labeled data from source domain D° as
(x3,¥%), i = 1,2,..N,, where y{ is the label of x? and N;
is the size of D*. Similarly, D', (x!,y!) and N; represent
the target domain. Given samples {x5} and {x!}, there ex-
ist many criteria (such as the Kullback-Leibler (KL) diver-
gence) that have been used to estimate their distribution dis-
tance. However, many of these criteria are parametric or re-
quire intermediate density estimate. Recently, Borgwardt and
Gretton et al. [7] have designed an effective nonparametric
criterion, referred to as Maximum Mean Discrepancy (MMD)
for comparing data distributions based on Reproducing Ker-
nel Hilbert Space (RKHS) distance. Let us denote the kernel-
induced feature map as ¢. The empirical estimate of MMD
between D® and D' is

2

1 & 1 &
MMD(D*, DY) = || 5 S o) - 1 S et )
fi=1 i=1 H

The feature map ¢ transforms the samples into a higher
or even infinite feature space, and the inner product of ¢(x;)
and ¢(x;) equals to the kernel function K(-,-), namely,
K(x;,%x5) = ¢(xi)Tq5(x]-). Note that when MMD asymptoti-
cally approaches zero, two distributions of high-dimensional
feature space are the same or close to each other [8]. So it
is quite critical to minimize the MMD in order to reduce the
mismatch between data from source and target domains.

3. MULTIPLE KERNEL LEARNING

An support vector machine (SVM) [9] is a two-class classifier
constructed from sums of a kernel function K (-, ),

N
J0) =iy K(x,x;) + b 2
i=1
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where the y, are labels, Zf\il a;y; = 0, and a;; > 0. The
vector x; are support vectors trained by an optimal algorithm.

In SVMs, it is usually uncertain which kernel is the most
suitable for the task at hand. Intuitively, combining sev-
eral kernels available can be a good choice. So was born
the multiple kernel learning. Learning a optimal set of ker-
nel weights 8 = [54, ..., BM]T for kernel combination is
referred to as MKL problem. Given a set of M kernels,
{Ki(-,+),...,Kp(+,-)}, a combined kernel K(-,-;3) can be
defined as the weighted sum of the individual kernels, namely

M
=1

where (; are the weights of each kernel function and meet
the constraint, Zﬁl Bi = 1 and B; > 0. And then an SVM
classifier is learned using the kernel defined in (3). During
test stage, the score defined in equation (2) is adjusted to

N M
f) = iy BiKj(x,x;) +b “
=1 =1

4. SIMPLIFIED DOMAIN TRANSFER MULTIPLE
KERNEL LEARNING

4.1. DTMKL

The kernel defined in equation (3) is a linear combination of
a set of base kernels, and we should note that the combination
is equivalent to a weighted concatenation of the associated
feature spaces, namely

m¢1(x)
o(x;8) = : 5)
VBrron(x)

As has been mentioned, the MKL problem is to learn a op-
timal set of kernel weights by some complex methods. It also
means to discover a weighted higher feature space defined in
(5) which is the most suitable for the task at hand. Inspired
by this motivation, we hope to find a *good’ representation
of feature space that minimizes the distribution mismatch of
data from different domains by using multiple kernels. In [5],
a novel method called domain transfer multiple kernel learn-
ing was proposed. It simultaneously considers minimizing the
structural risk function and the distribution mismatch, namely

argmin (MMDg(D*, D') + 6R(K. f,D)) (6)
K.f

where the first term represents the distribution mismatch de-
scribed by multiple kernel K and the second term is the struc-
tural risk function, # > 0 is the tradeoff parameter and f is the
SVM classifier defined in equation (2).



4.2. SDTMKL

Our goal is to find a *good’ feature space in which the MMD
defined in equation (1) is minimized, so we take only the first
term of (6) to discover this space and then a SVM classifier is
used to learn robust models. The details are as follows.

First, the most important thing is to explicitly represent
the MMD in the form of MKL. We denote a vector / with
Ns + Ny entries, in which the first N entries are set as 1/N,
and the rest are set as —1/N;. Given a feature map ¢, let & =
[0(x3), ... 0(x¥.), #(x])...0(xy, )], the MMD can be written in
terms of the kernel matrix defined by ¢, as:

MMD(D?, D') = trace(KL) 7
where

K = (I)Tq) — |: is,s I[gs,t :| c R(quLN,,)X(NSJrNt)
t,s tt

K is a composite kernel matrix with K, ,, K; ; and K, ; being
kernel matrices on the data from the source domain, the target

domain and the cross domain, respectively, and L = it e
R(N5+Nt)X(Ns+Nt)

1
¥ Xis Xj € Ds,
_J 1
Lij=qw Xi,Xj € Dy,
1 -
—NW, otherwise.

Using multiple kernel, the equation (7) can be adjusted to

M
MMD(D*, D") = trace() | BiKiL) (8)
i=1
Now, the problem becomes minimizing the MMD defined
in (8). In order to facilitate the calculation, here we optimize
the following objective function

M
1 1
5MMD(DS,Dt)2 = 5(tmce(; BiK;L))?

1
=58"pp" B ©)

where p = [py, ... pas)” s p; = trace(K;L)

It is obvious that (9) is a typical convex quadratic problem
and many mathematical methods can be applied to figure out
an optimal set of weights 3. Here the gradient decent method
is used. The gradient of A in (9) is

Vh=pp' 3 (10)
So we can update the weight of multiple kernels as follow
Bry1 = Br — AVh (1D

where V1 is the updating direction and ), is the learning rate
at tth iteration.

The whole procedure of the SDTMKL Algorithm is sum-
marized in Algorithm 1.
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Algorithm 1 Framework of SDTMKL Algorithm

1: Given a set of M kernels, initialize the weight 3 =
(321

2: Calculate the kernel matrix K;,72 = 1, ..., M, and the ma-
trix L

3: for t=1,...,7do

. Calculate the updating direction Vi using (10) and up-
date the weight 3 using (11);

5: end for

6: Combine the kernel matrices using the updated weight 3
and a SVM classifier is used to learn robust models.

5. EXPERIMENTS

5.1. Experimental Setup

The experimental setup for this work is based on the NIST
2009 Language Recognition Evaluation(LRE). The 2009
LRE consisted of 23 linguistic classes. Here we choose 8 of
them, including Cantonese, Farsi, Hindi, Korean, Mandarin,
Russian, Urdu, and Vietnamese. The reason why we choose
these 8 languages is that both conversational telephone speech
utterances(CTS) and narrow band telephone segments from
Voice of America broadcasts(VOA) are available to them as
data sources.

Two data set are used in this work: “train” and “test”.
Here the CTS set is referred to as the target domain. Simi-
larly, the VOA set is referred to as source domain. The “test”
set only consists of all the CTS segments from the 2009 LRE
task. For each language, 1000 segments from VOA (a large
amount of samples from source domain) and 100 segments
from CTS (a limited number of samples from target domian)
are used for training models. The VOA samples for “train”
consist of narrow band segments from VOA broadcasts. The
CTS samples for "train” set come from previous NIST LRE
(2007) and the CallFriend, CallHome, OGI-22 collections.
And we randomly choose 1000 segments from the VOA
“train” set and 100 segments from the CTS “train” set for
each language, respectively. So we have 8800 samples for in
“train” date set.

Experiments are performed on the 8 languages closed-set
task. The criterion for evaluation is EER.

For feature extraction, we first extract 13-dimensional
MFCC features and the cepstral features are processed with
RASTA filtering. Then SDCC features are used with a 7-1-3-
7 parameterization.

A language and gender independent UBM is trained us-
ing all of the training data with 8 iterations of EM adapting
all parameters-means, mixture weights and diagonal covari-
ances. The number of mixture components is 512. For GMM
MAP training, only means are adapted. Then, a GMM Super-
vector (GSV) is extracted for each segment.

In our systems, we use the GSVs extracted in advance as
input features and take LIB-SVM as our classifier.



System 30s 10s 3s
GSV-SVM 12.14 | 19.16 | 28.74
NAP 9.73 | 18.00 | 29.54
SDTMKL 9.75 | 18.38 | 28.64
NAP + SDTMKL | 850 | 16.63 | 28.40

Table 1. Comparison of EERs (%) for different training meth-
ods at different durations for the 8 proposed languages of
LRE09.

For the baseline system, the 8800 GSVs for training are
directly sent into the SVM with linear kernel (i.e., K(x;, x;) =
X;ij ). And a score is calculated according to equation (2).
This is the common method referred to as GSV-SVM system
which has been widely used.

For the NAP estimation, all the 800 samples from CTS are
used to train the NAP projection. All the GSVs from “train”
and “test” set are processed with NAP. Then, the GSV-SVM
system is used.

For our SDTMKL system, two types of base kernels are
used: linear kernel and polynomial kernel (i.e., K(x;,x;) =
(xI'x; +1)"), we set a = 1.1, 1.2, 1.5, 1.8, 2.0, 2.3, 2.5
empirically. So we get eight kernels and then the proposed
SDTMKL algorithm is used to learn an ideal set of weights
of the base kernels. A weighted higher feature space defined
in equation (5) is discovered and theoretically, it is the most
suitable feature space in which the distribution mismatch be-
tween data from the VOA and CTS set is minimum. At last,
the SVM classifier is used to learn robust models in this opti-
mal feature space. During the test stage, a score is calculated
according to equation (4).

At last, we combine the NAP and our SDTMKL frame-
work. All the GSVs processed with NAP are sent into the
STDMKL system.

5.2. Experimental Result

Results for the various systems are shown in Table 1. First, we
should note that the performance of the baseline GSV-SVM
system is greatly deteriorated because only a limited number
of samples which match the target domain and a large number
of samples from a different domain are used to train models.
Second, both NAP and the SDTMKL algorithm are quite ef-
fective. They outperform the GSV-SVM system at 30s and
10s durations. Third, the SDTMKL can effectively combine
with NAP and further improve the performance. Last, note
that 3s is a quite difficult task and none of the methods can
perform well at this duration.

6. CONCLUSION AND FUTURE WORK

In this paper, we introduced transfer learning into language
recognition to solve the problem of mismatch between train
and test conditions. We presented a novel transfer learning
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technique SDTMKL to find a feature space that minimizes
the mismatch. Our experiment demonstrated that our method
can reduce the sensitivity to the mismatch. In addition, it can
combine with NAP to further effectively improve the perfor-
mance of the original system. To our knowledge, this is the
first time such an approach is applied to language recognition.
In the future, we plan to apply our method to other exiting al-
gorithms for compensation, such as i-vector. Besides, we will
further explore some other kinds of base kernels.
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