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ABSTRACT

In this paper we propose a discriminative feature extraction
method, DFE, to address the increasing number of features
in language identification (LID) tasks. Similar to linear dis-
criminant analysis (LDA), it extracts the most discriminative
features through the maximization of an “approximated” mu-
tual information I(C;Y ) between the class labels C and the
projected data Y . Compared with other feature extraction
methods, experiments done on the CallFriend corpus shows
DFE could handle high-dimensional dataset with ease. Fur-
thermore, this feature extraction shows improvements on the
LID task over standard feature extraction methods (LDA and
principal components analysis).

Index Terms— Feature extraction, mutual information,
language identification

1. INTRODUCTION

Language identification (LID) systems try to automatically
identify the language spoken in an utterance using features
extracted from the acoustic signal [1]. Training a LID system
requires the acquisition of features from the speech that are
appropriate for discrimination between the languages, those
systems that include more features tend to show superior per-
formance. However, including irrelevant or noisy features can
degrade performance (to say nothing of increased computa-
tional burden). Thus, feature extraction has become a neces-
sary preprocessing step to classification in LID tasks.

Many feature extraction methods exist (both supervised
and unsupervised), such as principal component analysis
(PCA), linear discriminant analysis (LDA) etc. PCA is an
unsupervised method that tries to project the data onto some
orthogonal principal components so that the corresponding
variances are maximized. Given a term-document matrix
X, these principal components can be obtained by select-
ing the m eigenvectors of cov(X) that correspond to the m
largest eigenvalues. The eigenvectors with small eigenvalues
correspond to dimensions with small variances, which we
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expect are either caused by noise or are irrelevant to the task,
and thus remove them. However, projecting the data in this
manner (with no respect for the downstream inference task,
here: LID classification) will not necessarily give the most
discriminative features needed for classification.

On the other hand, LDA is a supervised method that ex-
tracts the features so that the ratio of between-class variance
and within-class variance is maximized, i.e. it tries to separate
the class means as much as possible while keeping the within
class variance small. The transformed dataset Y = WTX ,
specifically, the transformation matrix W should maximize
the following objective:

J(w) =
|WTSBW |
|WTSWW |

(1)

where SB is the between-class scatter matrix, and SW is the
within-class scatter matrix. W can be obtained by computing
the eigenvectors of S−1W SB with largest eigenvalues.

LDA depends on the assumption that the data is dis-
tributed according to a unimodal Gaussian for the features
extracted to be the most informative for discriminating differ-
ent classes. When this assumption is violated, performance
can be degraded. Although LDA is a simple yet powerful
method, it can only extract no more than |C| − 1 features,
where |C| is the number of classes. Also, LDA wouldn’t
work when the scatter matrix SW is singular due to the small
sample size problem [2], i.e. when the number of samples
|X| is smaller than the dimensionality of the samples.

Given high-dimensional dataset X , we propose a super-
vised discriminative feature extraction method, DFE, as an
approximation to maximize the mutual information between
the class labels C and the projected data Y . DFE has no as-
sumption about the dataset distribution and extracts the most
discriminative features directly, which makes it a good choice
to handle the high number of feature dimensions in LID tasks.

The paper proceeds as follows: a brief introduction of how
I(C;Y ) is approximated is given in Section 2, followed by
the objective function and the proposed method in Section
3. Experiments comparing different techniques are shown in
Section 4, concluding remarks and relation to prior work ap-
pear in Section 5.
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2. ESTIMATION OF MUTUAL INFORMATION

When performing feature extraction, we would like to the pro-
jected data Y to retain as much information about the class
labels C as possible, and the mutual information I(C;Y )
[3] provides a quantitative measure of mutual dependence be-
tween two random variables C and Y :

I(C;Y ) = H(Y )−H(Y |C) (2)

Computing the entropy H(Y ), H(Y |C) usually involves es-
timation of the probability density distribution of Y , which is
infeasible for high-dimensional dataset due to the data spar-
sity problem cause by “curse of dimensionality”. In [4], an
estimation of the entropy based on nonparametric statistics is
proposed as follows:

H(Y ) =
m

N (N − 1)

∑
i 6=j

log ‖yi − yj‖2 + const. (3)

where N = |Y | is the size of the dataset Y = {y1, · · · ,yN},
m1 is the cardinality of yi ∈ Rm. The above estimation
makes it possible to compute the entropy from the dataset
directly. Furthermore, suppose there are K = |C| classes,
and each class k has Nk = |Yk| data points, the conditional
entropy is thus given by:

H(Y |C) =
K∑
k=1

Nk
N
H(Y |C = k) + const.

=

K∑
k=1

m

N (Nk − 1)

∑
ci=cj=k
i 6=j

log ‖yi − yj‖2 + const.

(4)

The estimated mutual information can thus be further simpli-
fied:

I(C;Y ) =
∑
i6=j

γij log ‖yi − yj‖2 + const. (5)

γij =

{
m

N(N−1) if ci 6= cj
m

N(N−1) −
m

N(Nk−1) if ci = cj = k
(6)

In other words, the mutual information can be estimated as
log sum of projected distance ‖yi − yj‖2 between two data
points weighted by γij . Since N ≥ Nk, γij is positive if they
belong to the same class, and negative otherwise.

3. OBJECTIVE FUNCTION

We would like to find the transformation matrix W that max-
imizes I(C;Y ) = I(C;WTX). Take the one dimensional

1m is the dimensionality of y, and M is that of x

case for example, without loss of generality, we add the con-
straint wTw = 1 and let zij = xi − xj . Using the Lagrange
multipliers, the Lagrange objective function J(w) becomes:

J(w) =
∑
i 6=j

γij logw
Tzijz

T
ijw−λ(wTw−1)+const. (7)

Take the derivative of J(w) w.r.t. w, and set it to 0, we have:

∂J(w)

∂w
= 2

∑
i6=j

γij
1

wTzijzTijw
zijz

T
ijw − 2λw

= 2
∑
i6=j

αijzijz
T
ijw − 2λw = 0

(8)

where αij = γij
1

wT zijzT
ijw

. Furthermore, αij can be seen
as the weight assigned to a pair of points xi,xj . However,
as experiments have shown, if two points are very close in
the projected space, |αij | could become extremely large and
zijz

T
ij would dominate J(w), which eventually leads to sub-

optimal solutions. Since the pair of points are expected to
be close if they are in the same class, one way to handle this
situation is to assign an average weight αij = γijγk to those
pairs belonging to the same class and αij = γijγl to the rest.
The mutual information can be used as a criterion (score) to
tune the parameters γk, γl on a development set. Specifically,
αij and γij are related as follows:

αij =

{
γijγl if ci 6= cj
γijγk if ci = cj = k

(9)

Another advantage of using the average weight α is that
the above optimization process can be simplified to the fol-
lowing generalized eigenvalue problem:∑

i6=jαijzijz
T
ijw = λw (10)

Since αij is pre-specified and zij are known, we have a closed
form for

∑
i6=j αijzijz

T
ij , and w is its eigenvector with eigen-

value λ. Naturally if we let αij = 0 for i = j and αij = αji,
the eigenvector can be computed as follows:∑

i 6=j

αijzijz
T
ij =

∑
i 6=j

αij(xi − xj)(xi − xj)
T

=
1

2

∑
ij

αij
{
xix

T
i + xjx

T
j − 2xix

T
j

}
=
∑
ij

xiαijx
T
i −

∑
ij

xiαijx
T
j

= XDXT −XAXT

= X(D −A)XT

= XLXT

(11)

where D is a diagonal matrix with entries Dii =
∑
j αij , A

is a matrix with entries Aij = αij . L = D − A is called
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the Laplacian matrix, and the projection matrix W is the m
orthonormal eigenvectors of XLXT corresponding to the
largest eigenvalues.

Under the chosen weights αij , the approximated objective
function J ′(W ) becomes:

J ′(W ) = tr
(
WTXLXTW

)
=
∑m
i=1λi (12)

which is the sum of the m largest eigenvalues λi. We can
see that J ′(W ) increases as long as we add λi > 0, and we
should keep the eigenvectors that have positive eigenvalues.

While tuning the parameters α, we can simply set γl = 1
and only tune γk, the proposed discriminative feature extrac-
tion method can be formulated as follows:

Algorithm 1 Discriminative Feature Extraction

1. Normalize the dataset and define a set Ak for γk
2. For γ(i)k ∈ Ak

· Compute the m eigenvectors of XLXT on training
set

W = [w1, · · · ,wm]
· Compute the projected data Y = WTX on devel-

opment set
· Compute the mutual information:

I(i)(C;Y ) =
∑
i,j αij log ‖yi − yj‖2

End
3. Find the set of parameters γk s.t.

γk = argmax
γ
(i)
k

I(i)(C;Y )

4. EXPERIMENTAL RESULTS

We then test the proposed feature extraction method on a stan-
dard LID task, the dataset used is the CallFriend corpus[5],
which contains conversations in 12 languages: Arabic, En-
glish, Farsi, French, German, Hindi, Japanese, Korean, Man-
darin, Spanish, Tamil, Vietnamese. Each document is a 30-
second segment of conversational telephone speech converted
to a high-dimensional feature vector using articulation “at-
tribute” features, courtesy of [6]. We will increase the num-
ber of features gradually and compare different feature ex-
traction methods. For each language we have 800 documents
randomly partitioned into training, development and test sets
(400, 200 and 200 documents respectively).

4.1. Attribute-based Features

In [6], they proposed “manner” and “place” of articulation
“attributes” as a universal acoustic characterization of all
spoken languages. Manner contains 6 items: vowel, fricative,
nasal, approximant, stop and silence; while place contains ten
items: coronal, dental, glottal, high, labial, low, mid, palatal,
silence and velar. Attribute transcriptions are obtained from

Fig. 1: Construction of feature vector by concatenating the manner
and place n-gram features, the first feature vector (up to 2 gram) is
of length 152, the rest two re of length 1368 and 12664 respectively

the phoneme transcripts via a phoneme-to-attribute mapping
table. The transcriptions are obtained for each document (Xi

for i ∈ (1, · · · , N)), and each document is then converted
into a M -dimensional feature vector xi by collecting and
concatenating n-gram counts of manner and place attributes
items respectively.

The n-gram attribute features are ideal for our tasks since
we can collect an arbitrary number of features by increasing
n. The following experiments use n = 2 to n = 4. Figure 1
shows the construction of n-gram features. In each condition,
we compute the average error rate µ and standard deviation
σ. Support vector machines (SVMs) with RBF kernel [7] are
used for classification.

4.2. Comparison of Feature Extraction Methods

We compare the proposed discriminative feature extraction
(DFE) method with standard approaches such as PCA, LDA.
Hence we only compare those methods using features up to
3-gram statistics. Specifically we did 2-way2, 3-way, 9-way
and 12-way experiments, the results

(
µ± σ

2

)
using different

number of features are shown in Figure 2.
When comparing different techniques, we project the

high-dimensional data onto m = C − 1 dimensional sub-
space Rm for LDA, DFE. The optimal value for m should be
the number of positive eigenvalues, generally this number is
C − 1. Since the dimensionality of subspace Rm has a huge
influence over the performance when using PCA, we evaluate
performance for a range of m and report the best performing
one. In the 2-gram case we can see that the classification
performances using supervised feature extraction methods
(LDA, DFE) are superior (with p-value≤ 2.2 × 10−16) to
the unsupervised method (PCA) or full dimensional features.
LDA and DFE give almost the same result, and the results are
not statistically significant. Also, using unsupervised method
(PCA) doesn’t give us any gain over the full-dimensional
case.

In the 3-gram case, there are 1386 features, which is much
larger than the number of samples N = 800 in 2-way classi-
fication. LDA’s inability to handle more features becomes ev-
ident. Specifically, in 2-way and 3-way classifications (M >

22-way means there are 2 classes in the dataset
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Fig. 2: Comparison of different feature extraction methods (a) using up to 2-gram features; (b) using up to 3-gram

N ), LDA fails to extract useful features and gives high error
rates. While the proposed DFE consistently gives the lowest
error rate (with p-value≤ 2.2× 10−16).

Including 4-gram statistics in the feature vectors, the clas-
sification error rate can be further reduced. Since M >>
N , we will not include LDA in the comparison, the results(
µ± σ

2

)
are shown in Table 1. All the experiments show that

the performance of the LID system can be improved by using
the correct feature extraction method.

Methods 2-way 3-way 9-way 12-way
Full 0.102±0.032 0.167±0.034 0.348±0.015 0.396
PCA 0.096±0.031 0.162±0.033 0.343±0.015 0.390
DFE 0.076±0.023 0.124±0.026 0.276±0.013 0.321

Table 1: Comparison of different feature extraction methods

5. CONCLUSION

In this paper we propose a discriminative features extraction
(DFE) method based on maximization of the non-parametric
estimation of the mutual information I(C;Y ) [4], which can
be solved by a generalized eigenvalue problem. The inclu-
sion of labeling information enables DFE to extract features
that are relevant for classification tasks. Compared with other
methods, DFE can handle the increasing features with ease
and improve classification performance. The work presented
in this paper is related to that of [4] in that they both try to
maximize the mutual information between the class label C
and the projected features Y =WTX: I(C;Y ). In [4] a gra-
dient method is used to perform the optimization with the con-
strain −λ‖W‖2, which might lead to suboptimal or extreme

solutions. We used simplified approximation of I(C;Y ) to
avoid suboptimal solutions and treat the optimization as a
generalized eigenvalue problem. Experimental results show
the proposed method is viable and effective.
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