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ABSTRACT

This paper proposes an approach to frame-level speech ac-
tivity detection based on the extended metaphor of an eco-
nomics marketplace. As in a real marketplace, the simulated
marketplace encourages features to specialize. Features that
might not have impressive average performance across the en-
tire data set might nonetheless perform very well on a subset
of the data, and the marketplace capitalizes on this special-
ization by consulting the features only when their expertise
is relevant. On an experimental data set, we show that the
framework is able to effectively utilize the expertise of a set
of voicing-related features. For the 50% of the data that fell
within these features’ realm of expertise, we observe an 83%
reduction in false alarm errors and 19% reduction in miss de-
tect errors compared to a baseline HMM-GMM system with
MFCCs. Even when we consult these features for the entire
data set, thus including the other 50% of data outside their
realm of expertise, we still observe a 20% total reduction in
equal error rate compared to the baseline system. Analysis
of the marketplace transactions also yields useful insight into
how the errors are distributed across the data and which types
of features are most useful.

Index Terms— speech activity detection, feature special-
ization

1. INTRODUCTION

This paper introduces a framework for speech activity detec-
tion (SAD) based on the metaphor of an economics market-
place. In this section we introduce the main concepts behind
the framework at a high level and discuss the influences of
previous work. There are three main concepts explored in
this framework, and each of these three is discussed in turn.

The first main concept is that our framework tries to
achieve a specific performance target. Most SAD systems are
evaluated by sweeping across a range of one specific param-
eter to generate a receiver operation characteristic (ROC) or
detection error tradeoff (DET) curve [1][2]. The ROC/DET
curve describes the tradeoff between false alarm (FA) and
miss detect (MD) errors. The point on the tradeoff curve
closest to the desired performance goal is identified, and this
operating point is chosen. In other words, the performance

goal is not taken into consideration until after the system has
already been evaluated. Several approaches deal with this
issue by training the classifier using an error criterion based
on some aspect of the ROC curve, such as the area under the
curve [3], the detection accuracy for a given range of accept-
able FA rates [4], or the performance near a specific point in
the ROC plane [5]. The proposed approach is similar to [5] in
attempting to achieve a specific performance target, but with
the major difference that the performance target information
is incorporated during the prediction phase rather than the
training phase. During the prediction phase, this framework
allocates a targeted maximum number of FA and MD errors
and treats these “allowable” errors as valuable, constrained
resources that can be traded in a marketplace. The perfor-
mance target is thus taken into account from the beginning
of the simulation, and predictions are strategically tailored
to achieve the specific performance target to the best of the
system’s ability.

The second main concept is to treat each feature as a weak
classifier and to assign weights to the weak classifiers in a
dynamic fashion. This approach draws heavily from the Ad-
aboost algorithm, which considers a set of weak classifiers
and generates a prediction based on a weighted combination
of the weak classifiers’ predictions. In Adaboost, the weights
assigned to the weak classifiers are determined during the
training phase and are fixed during the prediction phase. [6]
is the original paper by Freund and Schapire. Adaboost with
trees was touted by Breiman [7] to be the “best off-the-shelf
classifier in the world” and, indeed, we showed in [8] that
Adaboost can be very effective for SAD in noisy environ-
ments when used with appropriate features. One major dif-
ference between our current approach and Adaboost is that,
instead of having the weights of the classifiers be determined
beforehand and fixed during prediction, we instead determine
the weights dynamically by considering how confident each
weak classifier is in its current prediction. Several different
dynamic weighting schemes are explored in [9], [10], [11],
and [12]. In this paper, we adopt the approach in [12] referred
to as dynamic selection, where we assign all the weight to the
most confident weak classifier and zero weight to all other
weak classifiers. In other words, our strategy is to take each
individual prediction problem before our committee, ask the
question ‘Who knows the answer to this question?’ and let
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the committee member with greatest confidence supply an an-
swer. Because features are consulted only when their exper-
tise is relevant, we refer to our ‘experts’ as specialist features.
A more detailed explanation will be given in section 2.

The third main concept is to generate speech-nonspeech
predictions in order of confidence rather than in order of time.
In other words, rather than generating our predictions in se-
quential order in time, we instead generate predictions start-
ing with the frame that we have the most confidence in and
progress towards frames that we have less and less confidence
in. So, for example, if we are trying to generate speech-
nonspeech predictions on a file with 6000 frames, we might
first generate a prediction for frame 5300, followed by a pre-
diction for frame 500, and so on. Changing the order in which
we generate predictions will probably not affect our accuracy
significantly, but this reordering leads to interesting insights
into the data that would not be available to us otherwise. [5]
considers a similar reordering of data points based on the clas-
sifier’s posterior for the purpose of re-weighting data samples
in an iterative training process, but here we simply use the
reordering during the prediction phase as a diagnostic tool to
gain insight into the data and the features. As we will show
later in this paper, this reordering allows us to understand how
errors are distributed across the data and to identify which fea-
tures are most useful for high accuracy predictions.

The rest of the paper is organized as follows. Section 2
describes the conceptual framework in detail. Section 3 ex-
plains the experimental set up. Section 4 shows results on the
experimental data set and provides an analysis of the results.
Section 5 summarizes the main ideas and concludes the work.

2. SYSTEM DESCRIPTION

There are two main components of this framework: training
the models and running the economic marketplace simulation.

We first describe training the models. The models for each
feature are computed independently and consist of two func-
tions f and g. The function f is simply a histogram of the fea-
ture values. The function g uses the same histogram bins as f,
but instead indicates the fraction of frames that are speech (i.e.
an empirical speech posterior probability). In other words, if
the value of g for a certain histogram bin is .2, this tells us that
20% of the frames that fall in that bin are speech. So, to train a
model, we simply need to calculate the feature on all training
frames, classify each frame into a histogram bin according to
the feature value, and accumulate counts accordingly. Note
that the models for each feature are completely independent
of one another. The collection of functions f and g for all
features comprises the training models.

Next, we turn our attention to the economic marketplace
simulation. Figure 1 is a depiction of the marketplace that
will help build a mental map in the reader’s mind and serve
as an explanation aid. The first row of circles at the top rep-
resent speech frames, and can be thought of as commodities

Fig. 1. Conceptual map of the economics marketplace. The
goal is to purchase all the frames by carrying out transactions
with the feature vendors. The table shows the prices that the
vendors charge for the first 3 frames.

that we would like to purchase. The act of purchasing a frame
corresponds to making a speech-nonspeech prediction on that
frame. Our goal, then, is to eventually purchase all of the
frames. The second row of circles represents features, and
can be thought of as vendors through which one can purchase
the commodities. For example, one feature vendor might be
an energy feature, another feature vendor might be the first
MFCC coefficient, and so on. The third row (below the table)
contains a single circle which represents you, the consumer.
Your goal in the simulation is to purchase all the commodi-
ties from the various vendors in the marketplace as cheaply as
possible. The fourth row contains two circles which represent
the two types of currencies that you can use as money to pur-
chase the commodities. The currencies will be referred to as
units of faf and mdf, which stand for false alarm frames and
miss detect frames.

At this point it is helpful to point out a few observations
about the marketplace simulation. First, as in a real market-
place, the vendors offer the commodities at different prices.
Each element of this vendor-commodity price table is g(X)
mdf or 1-g(X) faf. For example, if g(X)=.99, we can predict
nonspeech and have a 99% probability of making a MD error
(.99 mdf), or we can predict speech and have a 1% probability
of making a FA error (.01 faf). Note, then, that for any given
commodity, the vendor will offer a price in either faf or mdf.
How do we compare prices in different currencies? This leads
to our second observation, which is that the exchange rate be-
tween mdf and faf changes dynamically depending on how
much faf and mdf you currently have. The reasoning here is
that we value the different currencies according to how scarce
that currency is. If we have equal amounts of faf and mdf, we
have no preference on which type of mistake (FA or MD) we
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make. However, if we have 100 faf and 1 mdf, we are very
loathe to make a MD error. In our simulation, we simply used
the ratio between the amount of faf and mdf currently owned
as the exchange rate. Third, as noted previously, the amount
of money we begin the simulation with is the estimated num-
ber of FA mistakes and MD mistakes we can make according
to our performance target.

What is the best purchasing strategy of the consumer
given his limited resources? The optimal strategy is obvi-
ous: purchase the cheapest frame that is available in the
marketplace.1 The transactions continue until the consumer
has purchased all of the frames. What happens, though, if
you run out of money? In this case, we can simply give
ourselves more money to ensure that we eventually purchase
all of the frames. The only ramification of giving ourselves
more money is that it means we probably won’t meet our
performance targets.

3. EXPERIMENTAL SET UP

We ran simulations using data from the DARPA RATS pro-
gram. The data consists of conversations recorded over var-
ious radio transmission links. In general, the audio data is
very noisy and contains highly non-stationary noise, includ-
ing high energy non-transmission regions. Due to ground
truth label integrity issues, we randomly selected 1 minute
segments and manually verified the labels, throwing out any
segments that had poor labels. Our final data set consisted
of 523 training segments and 324 evaluation segments. For
more information on the data and on other SAD approaches
proposed for this data set, see [13], [14], and [15].

The features we used in the simulations consist of a base
voicing feature and a set of 220 derived voicing features.2 The
base feature is the probability of voicing as estimated by a
subband autocorrelation pitch tracker, which is described in
[17]. Using this probability of voicing at every frame as a
base feature, we then derived a family of features by calcu-
lating statistics on windows of various sizes. The statistics
we considered were the minimum, the maximum, and various
quantiles in between (where, for example, the 50% quantile
would correspond to the median). We considered windows
up to 2 seconds long. In total, we had 221 voicing features.

4. RESULTS

The results of the simulations are shown in figure 2. The solid
line is (what we will call) the error trajectory for the eco-
nomics marketplace simulation using the 221 derived voicing
features. An error trajectory begins at the (0,0) point in the

1This statement should become quite obvious to any graduate student if
you simply replace the word ‘frame’ with ‘food’.

2Initial experiments were also carried out with spectrotemporal modula-
tion features such as those explored in [8] and [16], but these features were
much less effective than voicing features and so are not included in this work.

Fig. 2. Comparison of error trajectories at each system’s equal
error rate point. The solid trajectory shows the accumulation
of errors as the marketplace simulation progresses. The dot-
ted line is the imputed error trajectory for a baseline system
where the ordering has been adopted from the marketplace
simulation. Each segment represents 5% of the data. The
boxed data points show the cumulative error rates for the first
50% of the data.

ROC plane and shows the accumulation of FA and MD errors
over the course of the simulation. Each plotted point along
the trajectory demarcates 5% of the frames in each simulation
(averaged across the evaluation data set). The error trajectory
allows us to visualize how the errors in the system are dis-
tributed across the data, starting with the highest confidence
frames and progressing towards the lowest confidence frames.
We are particularly interested in the distribution of demar-
cated points close to the origin in the ROC plane, since this is
the ‘region of expertise’ of these specialist features. What we
would like to see is an extremely dense cluster of demarcated
points close to the origin, for this would imply that the spe-
cialist features are very effective for a significant fraction of
the data. The dotted line in figure 2 is an imputed error trajec-
tory for a standard hidden markov model with gaussian mix-
ture models (HMM-GMM) using 39 dimensional MFCCs.
The ‘imputed’ term refers to the fact that we are scoring a
different system but adopting the ordering of frames from our
marketplace simulation. Comparing these two trajectories can
tell us, for example, if frames that are ‘easy’ for the specialist
features are also ‘easy’ for our reference baseline system.

There are three things to notice about the results we ob-
serve in figure 2. First, the specialist features definitely spe-
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cialize. The spacing of the demarcated points in the solid line
is very dense at the beginning of the trajectory and compara-
tively very sparse towards the end of the trajectory, indicating
that the features perform much better on frames they are con-
fident in. In fact, the 50% of the data that the specialist fea-
tures are most confident in account for only 7% of the total FA
errors and 11% of the total MD errors (this is denoted by the
boxed point on the solid line). In contrast, the 13% of the data
that the specialist features are least confident in account for
50% of the total number of both FA and MD errors (this cor-
responds roughly to the point at 2%FA and 2%MD). In other
words, our specialist features are very smart in their realm of
expertise and very dumb in their realm of ignorance. Second,
the features’ expertise level is very high. On the 50% of the
data that the specialist features are most confident in, the spe-
cialist features have 83% fewer FA errors and 19% fewer MD
errors compared to the baseline HMM-GMM system (this is
indicated by the two boxed points). Within their realm of ex-
pertise, the specialist features’ performance would be hard to
beat. Third, both systems agree on what is hard. Note that
both systems have roughly the same (poor) performance on
the last few segments of their trajectories. This is an inter-
esting coincidence given how different the two systems are
both in their decoding algorithms and their features. It would
be interesting to investigate what fraction of frames in these
segments are located close to a speech-nonspeech boundary
in the ground truth labels. It could be that the performance
on these last few segments is affected more by the accuracy
of ground truth annotations rather than by the effectiveness of
the SAD system.

In addition to analyzing the error trajectory, we also
looked at how many “sales” each feature vendor completed
throughout the simulation. There were three notable obser-
vations from this sales analysis. First, the sales distribution
resembled a Zipfian distribution. In other words, the top few
vendors accounted for a significant fraction of sales, and there
was a long tail in the distribution constituted of many vendors
that only carried out a few sales. For example, when we con-
sider the sales distribution on the 50% of the data within the
features’ realm of expertise, the top 7 vendors made up 50%
of the sales while the worst 100 vendors made up less than 2%
of the sales. Second, the feature vendors specialized individ-
ually. Earlier we made the point that the features specialize
corporately as a group on a subset of the data, but here we
note that the features also specialize individually in only pre-
dicting speech or only predicting nonspeech. On the first 50%
of the data, 183 of the 221 feature vendors exclusively made
only one type of prediction (either speech or nonspeech but
not both), and these 183 vendors made up 99.5% of the sales.
Apparently, in a very cut-throat marketplace the only way for
a feature vendor to survive is to specialize in making one type
of prediction. Third, there seems to be 2 different types of
information that are especially useful for high-accuracy SAD
predictions. Among the top 7 feature vendors on the first 50%

of the data, 6 features were the maximum of voicing probabil-
ity over long windows (ranging from 1.4 to 2.0 seconds). So,
the first type of information is identifying long windows in
which there is little or no voicing, which we can confidently
predict as nonspeech. The other remaining feature (among
the top 7) was the 40% quantile of voicing probability over a
.5 second window. This second type of information is iden-
tifying regions with high average voicing probability over
a medium time scale, which we can confidently predict as
speech. Analysis of vendor sales is yet another aspect of the
marketplace simulation that yields interesting insights into
the effectiveness of the features.

5. CONCLUSION

We have introduced a framework to compute frame-level
speech activity detection based on the extended metaphor of
an economics marketplace. This framework has three main
concepts. First, the framework attempts to achieve a spe-
cific performance target, and predictions are made to try to
achieve the specified target to the best of the system’s ability.
Second, each feature is considered as a weak classifier, and
the weak classifier with highest confidence determines the
prediction on every frame. Third, predictions are generated
in order of confidence rather than in a temporally sequential
fashion. Based on simulations using DARPA RATS data, we
showed that a set of voicing features specialize very well on
a subset of the data. Within the 50% of the data that the fea-
tures had most confidence in, we observed 83% fewer false
alarm errors and 19% fewer miss detect errors compared to
a baseline HMM-GMM system. Analysis of the transactions
in the marketplace simulation also provides useful diagnostic
information such as how errors are distributed across the data
and which features are the most useful.

Future work includes (1) exploring alternative dynamic
weighting schemes that incorporate multiple weak classifiers’
predictions, (2) investigating other types of specialist features
in addition to voicing features, (3) diagnosing discrepancies
between the specified performance target and the actual per-
formance results, (4) combining this framework with other
systems so that the specialist features are utilized only when
their expertise is relevant, and (5) analyzing transactions in
the marketplace simulation for other purposes such as feature
selection.
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