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ABSTRACT

Even though small ASR errors might not impact down-
stream processes that make use of the transcript, larger error
segments like those generated by OOVs can have a consider-
able impact on applications such as speech-to-speech trans-
lation and can eventually lead to communication failure be-
tween users of the system. This work focuses on error de-
tection in ASR output targeted towards significant error seg-
ments that can be recovered using a dialog system. We pro-
pose a CRF system trained to recognize error segments with
ASR confidence-based, lexical and syntactic features. The
most significant error segment is passed to a dialog system for
interactive recovery in which rephrased words are reinserted
in the original. 22% of utterances can be fully recovered and
an interesting by-product is that rewriting error segments as a
single token reduces WER by 17% on an adverse corpus.

Index Terms— Automatic Speech Recognition, Confi-
dence Measure, Error Detection, Speech to Speech translation

1. INTRODUCTION

Current state-of-the-art speech recognition systems make er-
rors that have to be identified in order to apply appropriate
strategies for performing communicative and system actions,
such as error correction and repair dialogs. In ASR, the de-
coding strategy finds a sequence of words which has the maxi-
mum posterior probability (i.e. confidence) of being conveyed
by the speech signal. In applications such as speech-to-speech
translation, if this word string contains important ASR errors
(that affect semantics in a broad sense), the impact on the
translation process can be huge, leading to a failure in the
interaction. Detecting these significant ASR error segments
before sending a word string to the translation process is cru-
cial.

Once an error segment in an automatic transcription has
been detected, it is possible to apply a recovery strategy that
can use external knowledge, contextual information or a user
interaction in order to recover the missing information from
the original utterance. In the framework of the DARPA BOLT
project we present a new method for detecting specifically
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these significant error segments in ASR hypotheses by con-
sidering this problem as a sequence labeling task and filtering
the detections. An novel application of this method to a clar-
ification dialog strategy for a Speech to Speech (S2S) task is
also proposed and evaluated on TRANSTAC and BOLT data.

2. RELATED WORK

Estimating the confidence of an ASR hypothesis raises sev-
eral issues: choosing the span of the confidence measures [1]
(word, conceptual constituent or utterance), defining the set
of features involved in the confidence estimation (ASR fea-
tures, syntactic features, contextual information), combining
efficiently the different features and choosing a decision strat-
egy that takes into account all the features obtained [2]. The
majority of the approaches share two basic steps: generate as
many features as possible based on the ASR and/or automatic
process of the transcriptions; estimate correctness probabili-
ties with these features.

The problem of detecting ASR error segments is linked to
the OOV segment detection task, since all OOV words nec-
essarily generate at least one ASR error, and more often a
sequence of ASR errors (the OOV word being replaced by
short in-vocabulary words). State of the art OOV detectors
[3] are based on a MaxEnt paradigm taking various input fea-
tures corresponding to confidence scores produced by an ASR
decoder (such as word and sub-word confusion networks) in
addition to prosodic [4] or syntactic features. The problem is
cast as binary classification where each word or confusion-
network bin produced by the ASR module is classified as
OOV or non-OOV.

More recently [5] proposed to consider OOV detection as
a sequence labeling problem since OOV words tend to gen-
erate multiple ASR errors. A CRF-based tagger was used to
find the best sequence of begin OOV B_OOV and inside OOV
I_OOV tags. This approach lead to significant improvement
over the single word classification approach.

We propose in this study to generalize this method to other
ASR errors than OOV words. We keep the same approach
based on a CRF tagger using various ASR, lexical and syn-
tactic features in order to find ASR error segments. Signifi-
cant error segments detected are sent to the clarification dia-
log module for recovery.
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3. TASK

The task used in this study is the English-Iraqi Arabic speech-
to-speech translation task presented in [6]. We will consider
here the English ASR side only. Our goal is to detect er-
ror segments in the ASR output, before sending the transcrip-
tion to the English-Iraqi translation module. The ASR system
used is the SRI Dynaspeak system [7] adapted to the task.

We used two corpora to develop and validate our method:

• Corpus 1: this corpus contains English utterances
recorded by NIST for evaluating English-Iraqi Arabic
speech-to-speech systems with simulated dialogs in the
military domain during the TRANSTAC project. The
corpus is close to the training corpus of the IraqComm
system, therefore the Word Error Rate on the automatic
transcriptions is relatively low (< 10%).

• Corpus 2: this corpus has been recorded within the
BOLT project specifically for testing the ability of S2S
systems to recover from ASR errors and ambiguities. It
contains sentences in the same military domain as Cor-
pus 1, however each sentence was designed to contain
one problem that can be either an OOV word, a mis-
pronounced in-vocabulary word or a translation ambi-
guity. Of course the WER on this corpus is much higher
(35%).

These two corpora correspond to two very different situ-
ations: in Corpus 1 we are dealing with transcriptions with a
relatively high quality, containing regular ASR errors ; Cor-
pus 2 contains utterances very relevant to our task, since they
are all likely to contain at least one significant ASR error seg-
ment, however they can be considered as artificial as they
were explicitly designed for this purpose. It is therefore in-
teresting to evaluate our methods on both to verify that we
obtain good results on the target corpus without impacting
the performance on the regular corpus.

Corpus #words #utt. WER avg. err. err.
size fertil.

Corpus 1 84405 6527 8.4 1.5 1.2
Corpus 2 4919 570 35.8 2.6 4.8

Table 1. Corpora description with size, WER, average error
segment size and ASR error fertility

Both corpora have been processed by the Dynaspeak ASR
system. The automatic transcriptions have been aligned with
the reference transcriptions thanks to the sclite tool. From this
alignment we can compute 3 figures: the WER, the average
error segment size in the automatic transcriptions, the fertility
of an ASR error, representing how many erroneous words in
the ASR hypothesis are generated, on average, by 1 misrecog-
nized word in the reference transcription (without considering
the deletion). Table 1 shows these figures for both corpora.

As expected Corpus 2 contains much longer error segment
than Corpus 1. The ASR fertility is very high since every
non-deletion error in the reference transcription generates on
average a segment of almost 5 erroneous words. This can be
explained by the OOV names voluntarily added in Corpus 2.

4. ERROR SEGMENT LOCALIZATION

The Error segment localization method presented in this paper
is based on a CRF tagger which is in charge of labeling each
word of an ASR hypothesis thanks to a binary label: e for
error and c for correct. This tagger is trained on a corpus of
aligned automatic/reference transcriptions as presented in the
previous section. Three levels of features attached to each
word are used to train the CRF:

1. ASR features: we use as features the posterior probabil-
ities provided by Dynaspeak during the ASR decoding.
These values are discretized thanks to the method de-
scribed in [8] and available at [9]. The posteriors of the
current, previous and following word are used.

2. Lexical features: the current, previous and following
words are used as features, as well as the length of the
word and 3 binary features indicating if the 3 different
3-grams including the current word have been seen in
the training corpus of the ASR language model.

3. Syntactic features: the transcriptions are processed by
the MACAON NLP tool chain [10] that includes a POS
tagger and a dependency parser. POS tags, dependency
labels and word governors in the dependency tree are
added as features to the CRF tagger.

The error segment CRF tagger is trained on the concatena-
tion of Corpus 1&2 with a 10-fold setting. We use the CRF-
Suite tool to train tagging models. At decoding time we use
the CRF decoder implemented in MACAON that outputs a
lattice of word/tags hypotheses. This error detection lattice is
used in the recovery strategy presented in section 5. The re-
sults given in the next subsection are obtained with the 1-best
of these lattices.

There are different ways for evaluating the performance
of an error segment tagger. The simplest method consists in
evaluating the error/correct tag prediction at the word level.
This is the correct metric presented in table 2. However, since
this is a detection task with a target on erroneous words, it
is more relevant to give standard detection metrics such as
precision (P), recall (R), False Alarm (FA) and Miss (Miss)
detection. Table 2 presents all these results separately for both
corpora, although at training time they were merged (and used
in 10-fold train/test validation). Three settings are compared,
corresponding to different kinds of features used in the CRF:
ASR posteriors alone; + lexical features; + syntactic features.

As we can see, error prediction performance is better on
Corpus 2 which contains a lot of significant error segments.
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Corpus 1
features correct P R FA Miss
ASR post. 94.8 51.1 22.0 48.9 78.0
+ lexical 95.1 55.1 32.1 44.9 67.9
+ syntactic 95.1 55.4 36.8 44.6 63.2

Corpus 2
features correct P R FA Miss
ASR post. 78.7 76.6 41.5 23.5 58.5
+ lexical 81.3 74.0 57.8 26.0 42.2
+ syntactic 82.4 74.0 63.7 26.0 36.3

Table 2. Error segment detection results on both corpora ac-
cording to the set of features used

Adding lexical and syntactic features improves the recall mea-
sure for both corpora.

All the measures given so far estimate performance at the
word level. However in this study we are interested in error
segment localization. More precisely we want to check the
ability of the system to detect segments of ASR errors gener-
ated for each error in the reference transcription (measured as
ASR fertility in table 1). For this purpose we propose to sim-
ply collapse every contiguous sequence of errors in the ASR
transcriptions into a single token XX (effectively reducing the
number of insertions), then compare this new ASR transcrip-
tion to the reference one using the standard WER measure.
This new way of measuring error segment detection is inter-
esting as it has a direct impact on transcription quality, even
without any recovery strategy. For example if the reference
text of an utterance is “I saw that man at Izamni” and the
ASR hypothesis is “I saw that man at is on me” we have a
WER of 50%. If we correctly detect the erroneous segment,
by collapsing “is on me” into a single token “XX”, we obtain
a WER of 16.6%.

Corpus/WER ASR Oracle P(e)=0.5 P(e)=0.8
Corpus 1 8.4 7.5 9.2 8.3
Corpus 2 35.8 19.9 31.1 29.6

Table 3. WER scores obtained by collapsing all error seg-
ments into a single token before reference/hypothesis align-
ment

As we can see in table 3, the Oracle WER is much lower
than the ASR 1-best WER. The automatic error segment de-
tection results are provided with two operating points: one
at P (e) = 0.5 meaning that we consider all error segments
with a probability of 0.5 or higher according to the CRF tag-
ger; and one at P (e) = 0.8. We can see that increasing the
precision (by rising the P (e) threshold) decreases the WER,
mostly for Corpus 2, but we are still far from the Oracle value.

5. INTERACTIVE RECOVERY STRATEGY

The detection of ASR errors allows for automatic correction
strategies (for example by acquiring out-of-vocabulary words
from their most likely phoneme sequence), and for interactive
recovery strategies. In this section, we detail a recovery strat-
egy based on clarification dialogs for a hands-free, eyes-free
speech-to-speech translation application.

While there is a large body of work on multimodal error
correction [11, 12, 13], speech-only strategies developed for
dictation systems mostly rely on the fact that the user can see
the current transcript, editable with a set of speech commands
such as select, correct, spell that [14]. Face-to-face speech
translation requires an eyes-free setup so that speakers can
keep eye contact.

Such setup is seen in dialog systems that make use of task
driven error correction by asking implicit or explicit confir-
mation of information or commands [15]. However, most de-
ployed dialog systems rely on domain specificity to constrain
the concepts which can be corrected, an hypothesis that must
be removed given the wide range of domains that might be
addressed in speech-to-speech translation.

In our work, clarification dialogs are limited to three utter-
ances in order not to hamper the fluidity of the conversation.
This leads to a straight forward dialog strategy where only one
error segment can be addressed, even though it can be larger
than the actual error (the limit case is to ask for a complete
rephrase of the sentence). Therefore, we focus on the most
significant error segment generated by the detector.

In order to enforce this dialog management constraint, we
search for the most likely hypothesis with a single error seg-
ment in the error lattice generated by the CRF. Let E be the
transducer output by the CRF model, where each transition
bears an ASR word as input and an error class in {c, e} as
output. Let F be an acceptor that recognizes the language
c∗e∗c∗, which represent paths that only contain one error seg-
ment. The composition E ◦ F yields all error detections con-
taining at most one error segment, and therefore the path of
minimum log likelihood in this transducer is the best hypoth-
esis from the CRF which respects dialog constraints.

Depending on the type of error segment detected, the con-
fidence of the detector and the dialog context, the dialog man-
ager might ask one of the following question: (1) confirma-
tion of the transcript, (2) spelling for the error segment if it’s
an OOV name, (3) rephrase of the complete utterance, (4)
rephrase of part of the utterance. While the implementation
of (1) to (3) is straightforward, we detail how the original ut-
terance is edited with the answer to partial rephrase queries
to address (4). There are two solicitations implemented in the
dialog manager: “please rephrase” followed by the recorded
speech of the error segment, and a few context words before
the error segment followed by “what?” (to give the what?).

Error recovery from rephrased speech is an application of
text-to-text generation and draws inspiration from sentence
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fusion, the merging of two or more sentences to obtain a
shorter version in summarizers. Sentence fusion has been
cast as a parse tree fusion problem with rules [16, 17] and
language model rescoring, or machine learning from raw and
edited material [18]. While sentence fusion was studied with
well formed sentences as input, interactive error recovery in-
volves ASR errors and partial sentences.

When answering partial rephrase questions, the user
might adopt one or more of these behaviors:

1. The answer exactly fits the error segment.

2. The answer contains additional words which contextu-
alize the editing operation

3. The edit might not fit the syntactic context of the
original (“the <error> plates” ⇒ “plates without
scratches”)

4. Some original words might be rephrased for concise-
ness (i.e. use a pronoun in place of a noun phrase)

5. The user can use convenience phrases to introduce his
answer (“I said that . . . ”)

In addition, there can be ASR errors in the answer tran-
script [19] and the error segment may have false boundaries.

We adopt a finite state transducer approach to perform
an alignment of the answer with the original words, which
directly results in an edited utterance. See Figure 1 for an
illustration of the process. Let O and A be acceptors that
respectively represent the original and answer utterances.
Let <error> and <ins> be special symbols that match
respectively the error segment or an insertion. First, paths
that recognize <error> loops are added to O at the error
segment location. In addition, all word arcs of A are dou-
bled with <error>/word arcs so that when composing O
with A, words are either matched or recognized as part of
the error segment. Then, all word arcs from O are doubled
with word/<ins> transitions and <ins> loops are con-
catenated before and after A. That way, unmatched words
from the original utterance can be inserted on both sides of
the answer. The corrected utterance is the shortest path of
O ◦ A. In order to address rephrasing of already correct
words, this framework is enriched with paraphrase paths in
the original [20], alternate error segment boundaries, and
matching costs for <error> and <ins> symbols.

This recovery strategy is evaluated on a subset of Corpus
2 which was designed to exercise the error detection and re-
covery components. The following sources of errors are tack-
led: out-of-vocabulary words (nouns, adjectives and verbs),
homophones word sequences, mispronunciations, incomplete
utterances, and basic ASR errors. System output is recorded
in interactive sessions where the user is given a starting sen-
tence which contains an intended error, such as an OOV. The
system has to detect ASR errors in the recorded utterance and

0 1where

where/<ins>

2is

is/<ins>

3the

the/<ins>

4
hyper

hyper/<ins>

8
<error>

5bar
bar/<ins>

6ick
ick/<ins>

7chamber

chamber/<ins><eps>

<error>

0

<ins>

1

<error>/the

the
2

<error>/high

high
3

<error>/pressure

pressure
4

<error>/chamber

chamber

<ins>

Fig. 1. Example of transducers used for merging. The er-
ror segment covers the misrecognized word “hyperbaric” and
the resulting edited utterance is “where is the high pressure
chamber”.

User-intent We don’t want to create a furor over bad treatment.
Asr-output we don’t want to create a few or over bad treatment
Error-detect few or
Sys-question Can you rephrase AUDIO(few or)?
User-answer Stink.
Edited we don’t want to create a stink over bad treatment

Fig. 2. Example of evaluation trial for OOV “furor.”

ask for a rephrase of the largest error region. Then, the user ut-
ters an edition utterance which is supposed to fix the mistake.
As he is free of using his own words, there is no guarantee
that the new transcript will be free of ASR errors. An exam-
ple of trial is given in Figure 2. Out of 100 trials performed in
the BOLT project evaluation, the 59 trials that triggered error
correction are used for evaluating the error recovery system.

To decouple the evaluation of error detection and recov-
ery, we create two references: an error-segment reference
given the ASR output, and an intended edited transcript given
both what the user was supposed to say and how he rephrased
the original utterance. For error detection, the complete seg-
ment accuracy is 57%. For error recovery, we compute a
word-error-rate 27.57% of the new sentence compared to the
intended edition, while a comparative baseline which always
inserts the full answer in place of the error segment performs
at a WER 29.36%. Out of 59 trials, 22% are fully recovered,
a considerable result given that there may be error detection
mistakes, ASR errors in the answer and merging errors.

6. CONCLUSION

In this study, we adapt error detection in ASR output to an in-
teractive recovery strategy for a speech-to-speech translation
application. The system makes use of a CRF error segment
tagger based on acoustic, lexical and syntactic features, and
the dialog system asks for a rephrase of the most significant
error segment in order to edit the original sentence. Future
work includes relaxing language model constraints in word
lattices for getting more accurate error segment boundaries,
using word lattices when editing the original in order to cope
with ASR errors in rephrased error segments.
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