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ABSTRACT

The accuracy of automatic speech recognition systems in

noisy and reverberant environments can be improved notably

by exploiting the uncertainty of the estimated speech features

using so-called uncertainty-of-observation techniques. In

this paper, we introduce a new Bayesian decision rule that

can serve as a mathematical framework from which both

known and new uncertainty-of-observation techniques can be

either derived or approximated. The new decision rule in its

direct form leads to the new significance decoding approach

for Gaussian mixture models, which results in better per-

formance compared to standard uncertainty-of-observation

techniques in different additive and convolutive noise scenar-

ios.

Index Terms— Uncertainty-of-observation, noise robust

speech recognition, uncertainty decoding, modified imputa-

tion, significance decoding

1. INTRODUCTION

Although statistical models, like the hidden Markov models

(HMMs), have shown great success in modeling and recog-

nizing the temporal evolution of the spectral characteristics

of speech, noise and reverberation are still great obstacles

precluding wider use of automatic speech recognition (ASR)

systems. The main reason for dropping performance in real

operating conditions is that the distortion introduced by addi-

tive and convolutive noise leads to a mismatch between the

extracted features and the statistical model. With the interme-

diary goal of achieving the greatest match between training

and test conditions, many front-end and back-end techniques

have been developed to achieve an acceptable recognition ro-

bustness against noise and reverberation.

Front-end techniques like Wiener filtering [1], used e.g.

in the ETSI advanced front end (AFE) [2], stereo piecewise

linear compensation for environment (SPLICE) [3], or log-

spectral amplitude minimum mean square error (MMSE) esti-

mation [4] can be used to enhance the distorted feature vector

ot, where t denotes the frame index, and compute an estimate

x̂t of the clean feature vector xt. These estimates can then

be fed into the recognition model and treated as if they were

the true clean features. However, front-end approaches do

not perfectly compensate the distortion of the features. There-

fore, the output features generated by the front-end are neither

completely clean nor as distorted as the recorded noisy obser-

vations.

The emerging field of probabilistic uncertainty-of-obser-

vation techniques takes this uncertainty of estimation into ac-

count and considers the output of the front-end not as deter-

ministic but rather as a random variable. This means that the

front-end is now required to estimate a conditional probabil-

ity density function (PDF) p (x̂t|xt) rather than just an en-

hanced feature vector x̂t. Fortunately, Bayesian feature en-

hancement delivers an unbiased estimate x̂t for xt, whose es-

timation error variance Σxt|o1:t
(the observation uncertainty)

is equal to the variance of the posterior density p (xt|o1:t),
where o1:t = o1, . . . ,ot.

The PDF p(x̂t|xt) describes the generation of the en-

hanced feature vector x̂t through distorting the underlying

hidden clean feature vector xt with the estimation error et,

which is often assumed to be Gaussian. Thus,

x̂t = xt + et (1)

where

p (et) = N
(

et;0,Σxt|o1:t

)

(2)

and therefore

p (x̂t|xt) = N
(

x̂t;xt,Σxt|o1:t

)

. (3)

Of course, any other estimation algorithm or heuristic about

p(et), e.g. [5], can also be applied here.

A range of uncertainty-of-observation approaches [6–13]

has been proposed to exploit the uncertainty and its underly-

ing model. In this paper we introduce a consistent mathemat-

ical framework for the newly-introduced significance decod-

ing approach [13] allowing us to extend it to Gaussian mixture

model output distributions.

The rest of this paper is organized as follows. At first, a

new Bayesian decision rule is introduced in Section 2 as an
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alternative to the conventional maximum likelihood rule [14].

Then, a rigorous derivation of significance decoding (SD)

using this decision rule is given for the case when the output

distribution functions of the emitting states qt of the HMM

are described by a Gaussian mixture model (GMM). The new

decision rule can be considered as a general mathematical

framework of other previously introduced uncertainty-of-

observation techniques as will be discussed in Section 3. In

Section 4, the performance characteristics of SD are evalu-

ated and compared to the conventional maximum likelihood,

the uncertainty decoding [7] and the modified imputation [11]

approaches, using the Grid database [15], where uncertainty

decoding and modified imputation are two state-of-the-art

uncertainty-of-observation techniques. Finally, the relation

of the introduced technique to prior work and conclusions are

discussed in Section 5 and Section 6, respectively.

2. SIGNIFICANCE DECODING

2.1. Bayesian Decision Rule

In the presence of noise or other distortions, the clean feature

vectors x1:t are not directly observable. Consequently, the

likelihood L = p(xt|qt) required by the recognizer can not

be computed. The best we can do is to compute the expected

value of p(xt|qt), where for its computation all available in-

formation about xt should be employed. This means that we

have to compute the expected value utilizing the posterior den-

sity of xt, given all observable variables that are statistically

related to xt. Thus, the likelihood L is to be replaced by

E[p(xt|qt)|o1:t, qt] =

∫

p(xt|qt)p(xt|o1:t, qt)dxt, (4)

where we restricted ourselves to causal processing, i.e., the

posterior is only based on current and past observations.

The expectation in Eq. (4) is reminiscent of the approach

taken in the Expectation Maximization (EM) algorithm [16],

where the complete data log-likelihood is replaced by the ex-

pected value of the complete data log-likelihood, given the

observed data.

2.2. Significance Decoding for GMM

In order to evaluate the Bayesian decision rule in (4), first

we need to compute the posterior distribution p(xt|o1:t, qt).
Under the assumption that the enhanced feature vector x̂t

captures the sufficient statistics of o1:t, we can express

p(xt|o1:t, qt) as follows [13]:

p(xt|o1:t, qt) = p(xt|x̂t, qt) =
p (x̂t,xt|qt)

∫

p (x̂t,xt|qt) dxt

. (5)

The joint probability p (x̂t,xt|qt) in (5) factors into:

p (x̂t,xt|qt) = p (x̂t|xt, qt) p (xt|qt)

= p (x̂t|xt) p (xt|qt) . (6)

The second line in (6) was obtained by assuming that the es-

timate x̂t is independent of the HMM state qt, as is typically

the case in front-end processing methods.

Conventionally, the output distribution of the emitting

states qt is modeled by a GMM of K mixtures via

p (xt|qt) =
K
∑

κ=1

ωqκN
(

xt;µqκ
,Σqκ

)

(7)

with µqκ
, Σqκ and ωqκ as the mean, the covariance matrix and

the weight of the κth mixture of the qth
t state, respectively. By

applying (3) and (7) to (6), we obtain the following expression

for the joint probability

p (x̂t,xt|qt) = p (xt|qt) p (x̂t|xt) =

K
∑

κ=1

ωqκN
(

xt;µqκ
,Σqκ

)

N
(

x̂t;xt,Σxt|o1:t

)

. (8)

The multiplication of the Gaussian functions in (8) can be

reformulated [17] to

p (x̂t,xt|qt) =
K
∑

κ=1

ωqκN
(

xt; µ̃qκ
, Σ̃qκ

)

×

N
(

x̂t;µqκ
,Σqκ +Σxt|o1:t

)

, (9)

with

µ̃qκ
= Σqκ

(

Σxt|o1:t
+Σqκ

)−1

x̂t+

Σx|o1:t

(

Σxt|o1:t
+Σqκ

)−1

µqκ
, (10)

and

Σ̃qκ = Σxt|o1:t

(

Σxt|o1:t
+Σqκ

)−1

Σqκ . (11)

The denominator of (5) is obtained by noting that the integral

over the entire range of a PDF evaluates to one:

∫ K
∑

κ=1

ωqκN
(

xt; µ̃qκ
, Σ̃qκ

)

×

N
(

x̂t;µqκ
,Σqκ +Σxt|o1:t

)

dxt

=

K
∑

κ=1

ωqκN
(

x̂t;µqκ
,Σqκ +Σxt|o1:t

)

. (12)

Now, inserting (9) and (12) in (5), we obtain the following

expression for the sought posterior:

p(xt|x̂t, qt) =

K
∑

κ=1

ω̃qκN
(

xt; µ̃qκ
, Σ̃qκ

)

, (13)

with

ω̃qκ =
ωqκN

(

x̂t;µqκ
,Σqκ +Σxt|o1:t

)

∑K

m=1
ωqmN

(

x̂t;µqm
,Σqm +Σxt|o1:t

)
. (14)
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Applying Equations (7) and (13) to (4) and re-arranging

the products of Gaussians, again in accordance with [17],

yields the general SD likelihood

LSD
g := E[p(xt|qt)|o1:t, qt]

=

∫ K
∑

κ=1

K
∑

ν=1

ω̃qκωqνN
(

xt; µ̃qκ
, Σ̃qκ

)

× (15)

N
(

xt;µqν
,Σqν

)

dxt

=

K
∑

κ=1

K
∑

ν=1

ω̃qκωqνN
(

µ̃qκ
;µqν

,Σqν + Σ̃qκ

)

. (16)

2.3. Limiting cases

For sake of simplicity, in the following we assume that the

output distribution function of the emitting states is Gaussian,

i.e. p (xt|qt) = N
(

xt;µq,Σq

)

.

The first limiting case we discuss here is the uncertainty

flooding, where the feature stream to be recognized is ex-

tremely distorted, so Σxt|o1:t
→ ∞. In this case, the ob-

servation o1:t and thus the estimate x̂t becomes independent

of xt. Then, Eq. (4) simplifies to

E [p (xt|qt) |o1:t, qt]|Σ
xt|o1:t

→∞

=

∫

p (xt|qt) p (xt|qt) dxt

=

∫

N
(

xt;µq,Σq

)

N
(

xt;µq,Σq

)

dxt

= N
(

µq;µq, 2Σq

)

. (17)

Thus, even if a frame is completely uninformative, the

likelihood is still dependent on the HMM state and thus the

frame contributes to the classification. However, the variance

is doubled, and thus the importance of the frame for classifi-

cation is deemphasized.

Another limiting case occurs when the feature stream is

extremely reliable in the absence of noise or distortions. Then,

Σxt|o1:t
= 0, so that the posterior PDF p (xt|o1:t, qt) ap-

proaches a Dirac delta impulse at the position of the clean

speech feature vector. Plugging this into (4) immediately re-

veals the ordinary likelihood:

E [p (xt|qt) |o1:t, qt]|Σ
xt|o1:t

=0

= N
(

xt;µq,Σq

)

=: LML. (18)

3. RELATION TO OTHER UNCERTAINTY

DECODING RULES

In this section, we show that other uncertainty-of-observation

decoding rules reported previously can be related to the gen-

eral decoding rule of SD given in (4).

3.1. Observation Uncertainty

If p(xt|o1:t, qt) is approximated by p(xt|ot) in (4), we get the

decision rule of the so-called observation uncertainty (OU)

∫

p(xt|qt)p(xt|o1:t, qt)dxt ≈
∫

p(xt|qt)p(xt|ot)dxt =: L(OU). (19)

This rule has been proposed by [6], and it was considered

a heuristics, which does not appear to arise from any math-

ematical framework [18]. Equation (19) shows that it can

be viewed as an approximation of SD, obtained under the as-

sumption that the posterior of the clean features p(xt|o1:t, qt)
is unaffected by the model state qt.

3.2. Modified Imputation

Equation (16) shows that the complexity of computing LSD
g

increases quadratically with the number of mixtures K. How-

ever, a simplified version LSD
s of the SD likelihood can be

obtained by neglecting all terms in (16) with κ 6= ν and sim-

plifying the GMM weights to be only the output distribution

weights ωqκ :

LSD
s =

K
∑

κ=1

ωqκN
(

µ̃qκ
;µqκ

,Σqκ + Σ̃qκ

)

. (20)

A further simplification is possible when the increase of the

variance is neglected in (20). Then, the so-called modified

imputation (MI) rule [11] is obtained

LMI =
K
∑

κ=1

ωqκN
(

µ̃qκ
;µqκ

,Σqκ

)

. (21)

4. EXPERIMENTS AND RESULTS

4.1. Dataset

We have chosen signals uttered by five speakers (two male

and three female) from the Grid database [15] to evaluate the

new significance decoding rule defined in (16). As a training

set, we have considered about 950 clean utterances (95%) of

each speaker of the first four speakers. The rest of the utter-

ances of the four speakers together with 50 utterances of the

fifth speaker who did not appear in the training set have been

considered as the clean test set.

The noisy test set is generated by distorting the clean test

set with three different types of additive noise: white noise

[19], speech babble [19] and office noise [20], each in the

range of 0 to 15 dB. In the last test condition, using office

noise, the speech signals have been convolved with the room

impulse response (RIR) of an office [21] before the noise was

added. The office dimensions are about 6.10 × 4.30 × 3.20
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m3 and it has a reverberation time (T60) of about 0.7 s. The

RIR has been measured at a distance of 50 cm between loud-

speaker and microphone.

4.2. Experimental setup

The training and test sets have been downsampled to fs = 8 kHz

and enhanced using a Wiener filter. The noise power estimate

needed for the Wiener filter has been obtained using improved

minima controlled recursive averaging (IMCRA) [22]. The

variance of the Wiener filter in the STFT domain is used as

the observation uncertainty Σxt|o1:t
[23].

The mean and the variance extracted from the Wiener fil-

ter are propagated through the feature extraction stages [23].

The features are chosen to be the 13 static mel-frequency cep-

stral coefficients as well as the 26 delta and acceleration coef-

ficients described in the ETSI advanced front end (AFE) [2].

The Java Audio-visual SPEech Recognizer (JASPER) [24]

has been used in training and testing. A set of 52 HMMs

(51 words of the Grid database + silence) has been trained

using the clean training set. The HMMs are whole-word left-

to-right linear models, with three states per phoneme. Each

state has a GMM output distribution with four mixture com-

ponents and diagonal covariance matrices.

4.3. Results

Table 1 compares the performance of SD defined in (16) with

maximum likelihood defined in (18), uncertainty decoding ac-

cording to [7], and modified imputation defined in (21) in

terms of word accuracy , which is defined by:

%Accuracy =
N −D − S − I

N
· 100. (22)

In (22) (N), (S), (I) and (D) indicate the number of ref-

erence labels, substitutions, insertions and deletions, respec-

tively.

The results shown in Table 1 indicate that SD outperforms

all other approaches, with clear gains in almost every test con-

dition. When the clean test set is confined to the four speak-

ers used in training, we notice that the recognition accuracy

is exactly the same for all decoding approaches as expected.

However, SD outperforms the other approaches when a fifth

speaker, unseen in the training data, is added to the clean test

set. This indicates the adaptation capability of SD compared

to the other approaches.

5. RELATION TO PRIOR WORK

Existing probabilistic uncertainty-of-observation approaches

introduce the feature uncertainty provided by the front-end to

the back-end classifier in one of two ways. One way, used by

the uncertainty decoding approach [7] and its variants, e.g [8–

10], is to use the uncertainty to dynamically compensate the

Table 1. Word accuracies result when the decoding rules of

maximum likelihood (ML), uncertainty decoding (UD), modi-

fied imputation (MI) and significance decoding (SD) are used.

Noise SNR
ML UD MI SD

Type [dB]

Babble

15 83.48 84.82 87.87 88.30

10 66.31 68.37 73.33 75.74

5 45.32 47.09 52.91 56.17

0 25.53 27.45 35.18 35.46

White

15 69.65 76.52 87.73 88.09

10 55.04 64.26 78.30 78.58

5 42.77 48.79 65.74 66.45

0 30.28 32.41 50.35 48.94

Office noise 15 59.93 62.13 67.02 67.59

with 10 45.32 49.43 57.80 59.22

reverberation 5 29.86 31.49 37.30 38.01

0 22.77 23.12 24.54 24.47

Clean, 5 Spk. - 95.46 95.46 95.39 95.82

Clean, 4 Spk. - 98.58 98.58 98.58 98.58

Average - 55.02 57.85 65.15 65.82

statistical model parameters so that the model parameters bet-

ter match the corrupted features. The second way is using the

uncertainty to carry out model-based enhancement on the fea-

tures themselves, as done by the imputation approaches like

modified imputation [11].

The significance decoding approach shown here exploits

the observation uncertainty to dynamically compensate both

the features and the model parameters, by first carrying out

model-based feature enhancement, and then dynamically ad-

justing the model variance to account for the residual obser-

vation uncertainty.

6. CONCLUSIONS

In this paper, we have presented a novel uncertainty-of-

observation decoding approach, which extends the defini-

tion of the significance decoding rule introduced in [13] to

Gaussian mixture models. The significance decoding rule is

deduced based on the known concept [16] of replacing the

needed but uncomputable observation likelihood by its condi-

tional expectation given all relevant observable parameters.

Using this general form of significance decoding provides

a notable ASR performance gain over a wide range of additive

and convolutive noise conditions.
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