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ABSTRACT

The recognition of spontaneous speech in highly variable noise is
known to be a challenge, especially at low signal-to-noise ratios
(SNR). In this paper, we investigate the effect of applying bidirec-
tional Long Short-Term Memory (BLSTM) recurrent neural networks
for speech feature enhancement in noisy conditions. BLSTM net-
works tend to prevail over conventional neural network architectures,
whenever the recognition or regression task relies on an intelligent
exploitation of temporal context information. We show that BLSTM
networks are well-suited for mapping from noisy to clean speech
features and that the obtained recognition performance gain is partly
complementary to improvements via additional techniques such as
speech enhancement by non-negative matrix factorization and prob-
abilistic feature generation by Bottleneck-BLSTM networks. Com-
pared to simple multi-condition training or feature enhancement via
standard recurrent neural networks, our BLSTM-based feature en-
hancement approach leads to remarkable gains in word accuracy in a
highly challenging task of recognizing spontaneous speech at SNR
levels between -6 and 9 dB.

Index Terms— feature enhancement, Long Short-Term Memory,
recurrent neural networks, non-negative matrix factorization

1. INTRODUCTION

Spontaneous, conversational speaking styles and interfering noise
sources corrupting the speech signal can be seen as two major chal-
lenges that have to be faced by modern systems for automatic speech
recognition (ASR). Aiming to increase the robustness of ASR sys-
tems, various techniques affecting different stages and system compo-
nents within a speech recognizer have been proposed in recent years.
Such techniques comprise for example speech enhancement, feature
enhancement and normalization, probabilistic feature extraction via
neural networks, model adaptation, or multi-condition training, i. e.,
including noisy speech data in the training corpus [1].

Most studies on noise robust ASR focus on simplistic recogni-
tion tasks such as digit recognition [2] or tasks that follow a fixed
grammar [3]. In this paper, we evaluate various noise compensation
strategies under extremely challenging conditions by considering the
Buckeye corpus of spontaneous speech [4] superposed with highly
non-stationary noise obtained from the 2011 PASCAL CHiME Chal-
lenge data [3] at low signal-to-noise ratios (SNR). Building on our
previous work [5] in which we show word accuracy improvements ob-
tained by combination of semi-supervised sparse non-negative matrix
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factorization (NMF) [6,7], probabilistic feature extraction via bidirec-
tional Long Short-Term Memory (BLSTM) neural networks [8], and
multi-condition training, this study investigates whether additional
performance improvements can be obtained by applying BLSTM
networks that are trained to map from noisy speech features to clean
features.

Motivated by experiments which have shown that recurrent neu-
ral network (RNN) architectures can be applied for feature enhance-
ment in noisy conditions [9], we show that more effective feature
enhancement can be achieved if RNNs are replaced by BLSTM net-
works which are known to outperform conventional RNNs for tasks
in which long-range temporal context has to be considered. The
BLSTM architecture [10, 11] allows a more accurate mapping from
noisy observations to enhanced speech features as it is able to model
the temporal evolution of speech and noise over a longer period of
time. Furthermore, instead of exploiting this context-sensitivity for
mapping directly from speech features to phoneme estimates (as in
earlier work [8]), we now propose to apply separate BLSTM networks
for estimating clean features and phoneme likelihoods, and show that
this leads to superior ASR accuracy. Finally, we demonstrate that our
ASR architecture can exploit both BLSTM feature enhancement and
NMF speech enhancement in a complementary fashion.

The overall architecture of our ASR system is depicted in Figure
1: We use NMF to enhance the noisy speech signal (Section 2) before
we extract features that are enhanced by a BLSTM network (Section
3). Finally, a Bottleneck-BLSTM network (see Section 4) is employed
to generate a tandem feature vector that is processed by a Hidden
Markov Model (HMM) system.

2. SPEECH ENHANCEMENT BY NMF

NMF-based techniques for monaural speech enhancement, such as
the ones used in this study, are generally based on the assumption
that the wanted speech signal is corrupted by addition of interfering
noise in the magnitude spectral domain. Furthermore, it is assumed
that both the speech spectrogram and the noise spectrogram can in
turn be approximated as the product of non-negative speech and noise
dictionaries with non-negative coefficients (activations). The number
of atoms in the speech and noise dictionaries will be denoted by R(s)

and R(n), respectively. In our semi-supervised NMF approach, we
estimate a fixed speech dictionary from training data as detailed in
Section 6. In contrast, the noise dictionary is estimated for each utter-
ance along with the activations of the speech and noise atoms. To this
end, the Kullback-Leibler divergence of the observed spectrogram
given the product of dictionary atoms and activations is minimized,
and an additive sparsity constraint corresponding to the L1 norm of
the activations is added. For this minimization, the standard multi-
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Fig. 1: ASR system architecture.

plicative update NMF algorithm is applied, with a straightforward
extension to include the sparsity constraint (cf. [12, 13]). Similar
semi-supervised NMF approaches have been proven to be highly effi-
cient for speech enhancement, e. g., in [7,14]. Informally, the purpose
of sparsity is to force that only a few basis vectors can be active at
a given time, which is a reasonable assumption if the basis vectors
correspond to, e. g., phonemes, or spectra originating from different
noise sources. The update rules are applied for a fixed number of
iterations. For speech enhancement, we use a simple soft-masking
approach where each time-frequency bin of the observed spectrogram
is weighted by the contributions of speech and noise according to the
NMF decomposition, as in our previous work [5]. All experiments
for this paper are based on the NMF implementations found in our
open-source toolkit openBliSSART [15] to enforce reproducibility of
our results.

3. FEATURE ENHANCEMENT USING BLSTM
NETWORKS

The basic architecture of Long Short-Term Memory (LSTM) net-
works was introduced in [10]. LSTM networks can be seen as an
extension of conventional recurrent neural networks that enables the
modeling of long-range temporal context for improved sequence la-
beling. They are able to store information in linear memory cells over
a longer period of time and can learn the optimal amount of contex-
tual information relevant for the regression or classification task. An
LSTM hidden layer is composed of multiple recurrently connected
subnets (so-called memory blocks). Every memory block consists of
self-connected memory cells and three multiplicative gate units (in-
put, output, and forget gates). Since these gates allow for write, read,
and reset operations within a memory block, an LSTM block can
be interpreted as (differentiable) memory chip in a digital computer.
Further details on the LSTM principle can be found in [11]. Note
that the initial version of the LSTM architecture contained only input
and output gates. Forget gates were added later [16] in order to allow
the memory cells to reset themselves whenever the network needs to
forget past inputs. In our experiments we exclusively consider the
enhanced LSTM version including forget gates.

Standard RNNs have access to past but not to future context.
To exploit both, past and future context, RNNs can be extended to
bidirectional RNNs (BRNN), where two separate recurrent hidden
layers scan the input sequences in opposite directions [17]. The two
hidden layers are connected to the same output layer, which therefore
has access to context information in both directions. Bidirectional
modeling can also be applied within an LSTM framework, which
results in bidirectional LSTM.

Exploiting the context-sensitivity of the BLSTM technique, we
aim to build a network that learns how clean speech features can be
generated from noisy features. Hence, our feature enhancement (FE)

network has one input node for each noise corrupted input feature
vector component and one output node for each regression target
representing the clean feature vector. This means that we require a
clean and a noisy version of the training and development set (see
Section 5). In our experiments, we use 39 MFCC features (including
deltas and double deltas) which are extracted from the NMF-enhanced
speech signal every 10 ms using a window size of 25 ms. Prior to
network training, we compute the global means and variances of the
clean and the noisy training set feature vectors and perform mean
and variance normalization of the network inputs and the network
outputs using the means and variances from the noisy training set
and the clean set, respectively. The applied network has three hidden
layers consisting of 78, 128, and 78 memory blocks. Each memory
block contains one memory cell. During training we use a learning
rate of 10−5 and a momentum of 0.9. Zero mean Gaussian noise
with standard deviation 0.1 is added to the input activations in the
training phase in order to improve generalization. Prior to training,
all weights are randomly initialized in the range from -0.1 to 0.1.
Input and output gates use tanh activation functions, while the forget
gates have logistic activation functions. In the training phase, we
evaluate the overall root mean square error on the development set
after every fifth epoch. Training is aborted as soon as no improvement
on the development set can be observed during the last 25 epochs,
and the network that achieved the best root mean square error on the
development set is chosen as the final network.

4. BOTTLENECK-BLSTM FRONT-END

In addition to the feature enhancement BLSTM network, we employ
a secondary BLSTM network, trained to map from (enhanced) speech
features to phonemes. As shown in [8], combining BLSTM-based
probabilistic feature generation with the ‘bottleneck’ (BN) idea pro-
posed in [18] leads to lower error rates in spontaneous speech recog-
nition. The bottleneck principle allows to generate tandem feature
vectors of arbitrary size by using the activations of a narrow hidden
(bottleneck) layer as features – rather than the logarithmized output
activations corresponding to the estimated phoneme or phoneme state
posteriors.

Since we focus on bidirectional processing, we have two bottle-
neck layers: one within the network processing the speech sequence
in forward direction and one within the network for backward process-
ing (see Figure 1). The features enhanced according to the procedure
described in Section 3 serve as input for a BN-BLSTM network that
is trained on framewise phoneme targets. During BN-BLSTM feature
extraction, the activations of the output layer are ignored; only the ac-
tivations of the forward and backward bottleneck layer are processed
(i. e., the memory block outputs of the bottleneck layers). Together
with the enhanced MFCC features, the forward and backward bot-
tleneck layer activations are concatenated to one large feature vector
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which is then decorrelated and dimensionality reduced by Principal
Component Analysis (PCA) as shown in Figure 1.

5. DATABASE

The evaluation database applied in this study is identical to the speech
corpus employed in [5]: We use the Buckeye corpus [4] recorded in
clean conditions, mixed with the CHiME noise corpus [3] to simulate
spontaneous speech encountered in a noisy domestic environment.
The Buckeye corpus contains recordings of interviews with 40 speak-
ers. The speech is highly spontaneous and contains a variety of
non-linguistic vocalizations. The segmentation into utterances and
the speaker-independent subdivision into training, development, and
test set (stratified by speaker age and gender) exactly corresponds to
the ASR experiments reported in [19].

The additive noise considered in this study is taken from the
corpus of the 2011 PASCAL CHiME Challenge [3]. This corpus
contains genuine recordings from a domestic environment obtained
over a period of several weeks. Most of the noise is highly non-
stationary due to abrupt changes such as appliances being turned
on/off, impact noises such as banging doors, and interfering speakers;
more details can be found in [3]. To create the noisy version of our
evaluation database, we followed the protocol which was used to
create the CHiME Challenge ASR task [3]: In the development and
test set, we employ six signal-to-noise ratios (SNRs) ranging from
9 dB down to -6 dB in steps of 3 dB. After normalizing the speech
signals to -6 dB maximum amplitude to avoid clipping after mixing
with noise, we chose for each speech signal six noise segments from
the CHiME development/test noise matching the different SNRs. As
proposed in [3], the noisy utterances are not constructed by artificial
scaling of the speech or noise amplitudes, but by choosing noise
segments as they were recorded in a real life situation. This means
that noisy utterances at low SNRs occur in noise that naturally has
high energy, such as broad band impact noise. The SNRs were
measured on first order differences of speech and noise signals.

In addition, we created a multi-condition training set by mixing
clean training speech with random segments of the six hours of
training noise (disjoint from development and test noise) provided
with the CHiME Challenge corpus. For this multi-condition training
set, we added random segments of noise to the normalized speech
utterances; this provides a good coverage of SNRs while not assuming
any knowledge about the exact SNRs occurring in the test conditions.

6. EXPERIMENTS AND RESULTS

BLSTM-based feature enhancement was performed as described in
Section 3. For tandem feature generation (see Section 4), we trained
a BN-BLSTM network consisting of three hidden layers (per input
direction) on framewise phoneme targets obtained via HMM based
forced alignment of the clean Buckeye training set. All network and
training parameters, including the size of the hidden layers, learning
rate, etc. were set exactly as in [8]. Only the first 39 principal compo-
nents of the PCA-transformed BN-BLSTM feature vector were used
as final features for tandem ASR. In the HMM system applied for
processing the BN-BLSTM features, each phoneme is represented by
three emitting states (left-to-right HMMs) with 16 Gaussian mixtures.
Tied-state cross-word triphone models with shared state transition
probabilities were applied. Both, acoustic models and a back-off bi-
gram language model were trained on the training set of the Buckeye
corpus.

In order to apply NMF on the development and test set, spec-
trograms of the signals were calculated by short-time Fourier Trans-

form using Hann windows of 25 ms length at 10 ms frame shift, in
conformance with [5]. To build a phoneme-dependent yet speaker-
independent speech model for NMF, for each phoneme, the corre-
sponding spectrograms were extracted from the Buckeye training
set according to a forced alignment with the recognizer described
in [8]. These concatenated phoneme spectrograms were reduced to
a single dictionary atom by a 1-component NMF. The column-wise
concatenation of these atoms constitutes the speech dictionary. Thus,
the number of speech atomsR(s) in semi-supervised NMF was equiv-
alent to the number of phonemes (39). The number of noise atoms
R(n), the sparsity constant λ, and the number of NMF iterations K
were optimized as in [5].

In Table 1, the word accuracies (WA) on the Buckeye test set
are shown for different SNR levels as well as for clean speech. The
upper half of the table contains the results obtained with a recognizer
processing (standard or enhanced) MFCC features, while the lower
half shows the results achieved applying the Bottleneck-BLSTM
front-end explained in Section 4. For both experimental setups,
we examine the effect of speech enhancement via NMF (Section
2), multi-condition training (MCT), and feature enhancement via
BLSTM networks (BLSTM-FE). Applying a standard MFCC-based
recognizer without any enhancement techniques (first line in Table
1), we observe a drastic decrease of recognition performance from
50.97 % WA for clean speech to 21.21 % for noise corrupted speech at
-6 dB. When including noisy speech in the training set, word accura-
cies can be improved for all SNR levels: On average, multi-condition
training increases the WA by 3.8 % absolute. Yet, for clean speech, a
lower WA of 43.84 % has to be tolerated if MCT is employed. The
third line of Table 1 reveals that it seems to be much more effective
to apply BLSTM feature enhancement than to simply include noisy
speech in the training corpus. Compared to a system only using MCT,
a recognizer including a BLSTM network, that is trained to map from
noisy to clean features, can increase the average WA from 30.92 %
to 37.80 % at SNR levels between -6 and 9 dB. Interestingly, also
the recognition of clean speech is slightly improved, when applying
BLSTM-FE. Note that for a fair evaluation of the effect of BLSTM-
FE, we have to compare the obtained results with the corresponding
MCT results, as in both cases (MCT and BLSTM-FE) the training
noise is ‘seen’ during training, while the baseline recognizer (line 1 in
Table 1) is exclusively built from clean training material. Additionally
applying NMF for speech enhancement prior to feature extraction
consistently leads to a further WA improvement of around 1 to 2 %
absolute in noisy conditions.

A notable performance gain can also be observed when employ-
ing the BN-BLSTM front-end: For the best system configuration
(NMF, BLSTM-FE, BN-BLSTM, see last line of Table 1), we get
word accuracies between 38.24 and 52.94 % while for a comparable
recognizer without BN-BLSTM feature generation, word accura-
cies of between 32.98 and 44.28 % are obtained. An interesting
observation is that improvements via NMF, BLSTM-based feature
enhancement, and BLSTM-based probabilistic bottleneck feature
extraction seem to be partly complementary. Depending on whether
NMF speech enhancement or the BN-BLSTM front-end is applied or
not, we achieve average WA improvements of between 6.9 and 1.9 %
absolute (compared to MCT) if we additionally include a BLSTM
network for feature enhancement into the system architecture. Fur-
thermore, we can conclude that it is more effective to train two sep-
arate BLSTM networks, i. e., one mapping from noisy to enhanced
features and one mapping from enhanced features to phonemes, than
to train just one network mapping from noisy features to phonemes
(see last two rows of Table 1). Comparing speech enhancement by
NMF and feature enhancement by BLSTM on their own, we note
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Table 1: Word accuracies [%] on Buckeye test set at SNRs from -6 to 9 dB, on average across these SNRs, and for clean speech. NMF: speech
enhancement via non-negative matrix factorization; MCT: multi-condition training; BLSTM-FE: feature enhancement via BLSTM networks.

Front-end NMF MCT BLSTM-FE SNR clean
-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB avg

MFCC 7 7 7 21.21 23.11 25.40 27.85 30.85 34.48 27.15 50.97
MFCC 7 3 7 25.25 27.36 30.09 31.59 34.20 37.00 30.92 43.84
MFCC 7 3 3 32.50 34.39 37.24 38.62 40.93 43.10 37.80 44.42
MFCC 3 7 7 23.06 25.32 27.17 29.65 32.56 36.48 29.04 50.54
MFCC 3 3 7 26.51 28.82 30.85 32.85 35.13 37.95 32.02 43.83
MFCC 3 3 3 32.98 35.02 37.42 38.76 41.30 43.32 38.13 44.28

BN-BLSTM 7 7 7 22.73 25.08 28.13 30.51 35.16 39.04 30.11 58.21 [8]
BN-BLSTM 7 3 7 34.93 37.58 40.04 41.71 44.60 46.87 40.96 51.12
BN-BLSTM 7 3 3 37.45 39.46 42.36 43.87 46.43 48.53 43.02 53.14
BN-BLSTM 3 7 7 24.47 26.79 29.75 32.18 36.53 40.74 31.74 57.94
BN-BLSTM 3 3 7 35.74 38.45 40.49 42.45 45.27 47.29 41.62 50.91 [5]
BN-BLSTM 3 3 3 38.24 40.09 42.75 44.33 46.88 49.00 43.55 52.94

that BLSTM feature enhancement seems to be vastly superior in case
of the MFCC front-end (37.80 % vs. 32.92 % average accuracy on
noisy data), while the difference is smaller for the BLSTM front-end
(43.02 % vs. 41.62 %). We believe that this is due to the non-linear
and context-sensitive modeling in the BLSTM-MFCC framework,
which is not captured by the simple frame-wise spectral NMF model.
Still, adding NMF enhancement to the best BLSTM system (43.02 %)
yields a slight gain of 0.53 % absolute WA.

To investigate the effect of applying the BLSTM technique rather
than unidirectional LSTM and standard (B)RNNs for feature enhance-
ment, we repeated the baseline recognition experiments (no NMF,
standard MFCC front-end) using different neural network architec-
tures for feature enhancement. Figure 2 compares feature enhance-
ment with RNNs, BRNNs, LSTM, and BLSTM networks. As a
reference, also the results corresponding to the best system configu-
ration (NMF, BN-BLSTM, see last line of Table 1) is indicated as a
dotted line. Further, the performance of the baseline system without
feature enhancement is shown with and without MCT. We see that
feature enhancement with RNN or BRNN is comparable to simply
using MCT. A notable performance gain is reached via exploitation
of long-range contextual information within the network for feature
enhancement: Employing Long Short-Term Memory significantly
increases the word accuracy at all SNR levels. If LSTM context is
considered along both input directions, we see a further performance
improvement.

7. CONCLUSION AND OUTLOOK

In this paper we have shown how BLSTM networks can be applied
for noisy speech feature enhancement if they are trained to map from
noisy to clean features. Compared to standard RNNs, the Long Short-
Term Memory architecture allows for a more efficient exploitation of
temporal context which leads to improved feature enhancement. We
integrated BLSTM-based feature enhancement into an ASR system
featuring speech enhancement via NMF and a Bottleneck-BLSTM
front-end as introduced in [8]. After evaluating several variants
of our system, we found that the proposed feature enhancement
technique leads to increased word accuracies in all cases and is much
more effective than simple multi-condition training. Furthermore, the
combination of our technique with the BN-BLSTM feature extractor
shows that using two separate networks for subsequently estimating
clean features and phonemes, respectively, leads to better results than
applying a network that maps directly from noisy speech features
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Fig. 2: Word accuracies [%] on Buckeye test set at SNRs from -6 to
9 dB and for clean speech using different network architectures for
feature enhancement (BLSTM, LSTM, BRNN, and RNN).

to phonemes as done in [5]. Future work will concentrate on the
evaluation of alternative input features for BLSTM-based feature
enhancement, such as spectral or PLP features, and enhanced speech
and context modeling for NMF (cf., e. g., [6, 20]).

8. RELATION TO PRIOR WORK

LSTM has been applied for various pattern recognition tasks, in-
cluding phoneme classification [11], handwriting recognition [21],
emotion recognition [22], and driver distraction detection [23]. In
the field of ASR, (bidirectional) LSTM was shown to improve both
keyword spotting [24] and continuous speech recognition [8]. Since
the exploitation of temporal context within an RNN architecture is
known to lead to improved results for feature enhancement [9], this
study combines the ideas of RNN-based speech feature enhancement
and context-sensitive sequence labeling by BLSTM. Experimental
settings as well as the baseline recognition systems are adopted from
our previous work reported in [5].
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[23] M. Wöllmer, C. Blaschke, T. Schindl, B. Schuller, B. Färber,
S. Mayer, and B. Trefflich, “On-line driver distraction detec-
tion using long short-term memory,” IEEE Transactions on
Intelligent Transportation Systems, vol. 12, no. 2, pp. 574–582,
2011.
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