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ABSTRACT

In this work, the problem of joint direction-of-arrival and fundamen-
tal frequency estimation for multi-channel harmonic sinusoidal sig-
nals is addressed. Different from the conventional optimal filtering
method, we estimate the covariance matrix with the 2-D iterative
adaptive approach, which is based on a single snapshot. In addi-
tion, to improve the estimation accuracy for the off-grid sources, a
relaxation technique is utilized. Then, joint estimation is conducted
on this covariance matrix estimate with the optimal filtering method.
As a result, the relaxed iterative adaptive approach - optimal filter-
ing method is devised. Statistical evaluation with synthetic signals
shows the accurate performance of the proposed method compared
with the Cramér-Rao lower bound.

Index Terms— joint DOA and fundamental frequency estima-
tion, iterative adaptive approach, optimal filtering, multi-channel
harmonic sinusoidal signal

1. INTRODUCTION

The problem of parameter estimation for speech sources, namely,
the direction-of-arrival (DOA) and fundamental frequency (or pitch),
has been of interest to the signal processing community for many
years, finding its applications in source localization, speech signal
enhancement, automatic transcription and classification of music [1].
Traditionally, estimation of these two parameters is conducted sepa-
rately [2] - [4], [5] - [7]. Nevertheless, due to the issue of overlapping
harmonics (spatial or temporal) [7], it is difficult to identify different
sources with similar temporal or spatial frequencies accurately.

Recently, to facilitate the resolution of such sources, several
kinds of joint estimation approaches for DOA and pitch have been
developed. In [8], the nonlinear least squares (NLS) estimator is
proposed for a single-pitch signal, which is the maximum likelihood
estimator in the scenarios of white Gaussian noise and anechoic envi-
ronment, while it bears poor performance for the multi-pitch signal
due to the decoupling difficulty [9]. To overcome this problem, in
[10] and [11], the optimal filtering and multi-channel harmonic MU-
SIC (MC-HMUSIC) estimators are presented, respectively. How-
ever, in both methods, the data matrix is used. Thus, the user-defined
parameters such as the size of the data matrix affect the performance
of these estimators.

To address these issues, we propose the relaxed iterative adap-
tive approach (RIAA) to estimate the covariance matrix, which is
based on the 2-D iterative adaptive approach (IAA) and relaxation
techniques. At first, we tackle joint estimation of DOA and pitch

This work was funded in part by the Villum Foundation.

for the single-pitch signal. As shown in [12], no data partition-
ing is needed in the IAA-based method, i.e., the covariance matrix
can be estimated iteratively from only a single snapshot. That is,
there is no user-defined parameter when using this technique. On
the other hand, the IAA covariance matrix model is defined on some
frequency grid. To improve the estimation accuracy for the off-grid
sources, the relaxation technique is utilized herein with the IAA co-
variance matrix estimate as an initial estimate, and the RIAA co-
variance matrix estimate is produced. The DOA and pitch estimates
are computed with the harmonic optimal filtering method and the
RIAA covariance matrix estimate. This algorithm is termed as the
RIAA - optimal filtering (RIAA-OF) method. Furthermore, we ex-
tend the RIAA-OF method to the multi-pitch scenario. Simulation
results show that the proposed scheme has good accuracy perfor-
mance compared with the Cramér-Rao lower bound (CRLB) [13].

The rest of this paper is organized as follows. The proposed
joint estimator of the fundamental frequency and DOA, namely, the
RIAA-OF method, is detailed in Section 2, including the problem
statement, covariance matrix estimation, parameter estimation, and
extension of this method to the multi-pitch scenario. In Section 3,
simulation results are shown to evaluate the performance of the pro-
posed estimators by comparing with the CRLB. Finally, conclusions
are drawn in Section 4.

2. ALGORITHM DEVELOPMENT

2.1. Spatial-Temporal Signal Model

To facilitate the derivation to follow, we first present the multi-
channel model under consideration. Without multi-path propagation
of sources, the multi-channel signal model is given as follows.
The signal xi(n) received by the microphone element (or sen-
sor1) i arranged in a uniform linear array (ULA) configuration,
i = 1, 2, · · · , I , is modeled as [15]:

xi(n) = si(n) + qi(n), (1)

si(n) =
K
∑

k=1

Lk
∑

l=1

Al,ke
j(ωkln+αkl(i−1)+φl,k), (2)

for n = 1, 2, · · · , N , with ωk, αk, {Al,k} and {φl,k} denoting
the unknown fundamental frequency, scaled DOA, amplitudes and
initial phases of the k-th source, respectively. The number of sources
K and the number of harmonics Lk of each source k, are assumed to
be known, or found in some way such as [7]. The qi(n) is the noise
(assumed white Gaussian if not mentioned) of the i-th microphone

1Each sensor stands for a single channel.
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element with variance σ2. The objective is to estimate the nonlinear
parameters ωk and αk accurately.

2.2. Single-Pitch Estimation

To begin with, we focus on the single-pitch estimation (K = 1),
which consists of two steps: 1) covariance matrix estimation using
the RIAA and 2) joint estimation of the pitch and DOA using the
optimal filtering method. In the first step, the covariance matrix of
the (N ·I)×1 single snapshot data, xN,I , xN,I((i−1)×N+n) =
xi(n), namely, R = E{xN,I · xH

N,I}, is approximated by the well-
known IAA covariance matrix model [12], [16]:

R̂ = Z(ω,α)P̂Z
H(ω,α), (3)

where the covariance matrix is defined at the K1 × K2-point

frequency grid ω × α, ω =
[

2π 1
K1

2π 2
K1

· · · 2π
]T

, α =
[

2π 1
K2

2π 2
K2

· · · 2π
]T

, and the matrices Z(ω,α) and P̂ have the

forms of [12], [16]:

Z(ω,α) = [z(α1) · · · z(αK2)]

⊗ [z(ω1) · · · z(ωK1)] , (4)

z(ωk1) =
[

e
ωk1 , · · · , eωk1

N
]T

, (5)

z(αk2) =
[

e
αk2 , · · · , eαk2

I
]T

, (6)

ωk1 (1 ≤ k1 ≤ K1) and αk2 (1 ≤ k2 ≤ K2) standing for the k1-th
and k2-th elements of ω and α, respectively, ⊗ being the Kronecker
product, and

P̂ = diag(P̂1,1, P̂2,1, · · · , P̂K1,K2)

= diag(|β̂1,1|2, |β̂2,1|2, · · · , |β̂K1,K2 |2), (7)

with P̂k1,k2 denoting the power estimate at each frequency point on
the corresponding scanning grid, and equal to the magnitude square
of the amplitude: P̂k1,k2 = |β̂k1,k2 |2. Here the amplitude estimate
is solved by minimizing the following weighted least squares cost
function [17]:

β̂k1,k2 = arg min
β̃k1,k2

(xN,I − z(ωk1 , αk2)β̃k1,k2)
H

Q̂
−1(ωk1 , αk2)(xN,I − z(ωk1 , αk2)β̃k1,k2), (8)

and

z(ωk1 , αk2) = z(αk2)⊗ z(ωk1), (9)

Q̂(ωk1 , ωk2) = R̂− |β̂k1,k2 |2

z(ωk1 , αk2)z
H(ωk1 , αk2). (10)

By solving the above minimizing problem with the matrix inversion
lemma, it is derived that

β̂k1,k2 =
zH(ωk1 , αk2)R̂

−1xN,I

zH(ωk1 , αk2)R̂
−1z(ωk1 , αk2)

. (11)

Note that (11) is related to the unknown covariance matrix esti-
mate R̂. As a result, the covariance matrix estimation is performed
in an iterative way initialized by the periodogram estimate. In most
applications, 15 iterations are enough [16]. The steps of the above
IAA procedure are listed in Table 1.

β̂k1,k2 =
(

zH(ωk1 , αk2)xN,I

)/(

N · I
)

,
k1 = 1, · · · ,K1, k2 = 1, · · · ,K2.

repeat
R̂ = Z(ω,α)P̂ZH(ω,α).

for k1 = 1, · · · , K1, k2 = 1, · · · ,K2

• β̂k1,k2 =
z
H(ωk1

,αk2
)R̂−1

xN,I

zH(ωk1
,αk2

)R̂−1z(ωk1
,αk2

)
,

• P̂k1,k2 = |β̂k1,k2 |2.
end

until convergence

Table 1. IAA-based estimation of covariance matrix

As seen from (3), the IAA-based covariance matrix estimation
is related to the definition of the scanning grid ω × α. When the
sources are off grid, the performance will be degraded. To overcome
this problem, the relaxation technique [18] is utilized to refine the
estimate of the covariance matrix. The basic idea of relaxation is
to recover the signal part corresponding to some sinusoidal compo-
nent, and then to refine its location in a maximum likelihood (ML)
way under the assumption that the residual is white Gaussian. Now
that the location corresponding to the sinusoidal component is un-
known a priori, such refinement is conducted in an iterative way.
The relaxation approach is outlined in Table 2, and empirically, 5
iterations are sufficient for its convergence.

L =
∑K

k=1 Lk: Number of the sinusoidal components from
the K sources;
(ω′

l, α
′
l) (l = 1, · · · , L): Locations of the sinusoidal peaks

obtained from IAA;
β̂l (l = 1, · · · , L): Amplitude estimates corresponding
to the sinusoidal peaks.
repeat

for l = 1, · · · , L
• xl = xN,I −

∑L

i=1,i6=l
z(ω′

i, α
′
i)β̂i,

• (ω′
l, α

′
l) = argmax

ω̃,α̃

|xH
l · z(ω̃, α̃)|2,

• β̂l =
1

N·I
zH(ω′

l, α
′
l) · xl.

end
until convergence

Table 2. Relaxation of IAA

Now the covariance matrix estimation is achieved with the
RIAA method, and we proceed to conduct the joint estimation of
DOA and pitch with the optimal filtering method and the covariance
matrix estimate. The application of the optimal filtering method
to such joint estimation is introduced in [10], and is based on an
optimal harmonic linearly constrained minimum variance (LCMV)
filter. Consider the single snapshot xN,I , and introduce the FIR filter
impulse response vector h = [h(0) h(1) · · · h(N · I − 1)]T , from
which the output is given by:

y = h
H
xN,I . (12)

The output power of the filter is defined as:

E{|y|2} = h
H
Rh, (13)

where R = E{xN,I · xH
N,I} is the covariance matrix of xN,I . The

optimal filter response is found by using the LCMV principle, that
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is, we design the filter to have unit gain at the harmonic frequencies
while having maximum interference suppression:

ĥ = min
h̃

h̃
H
Rh̃, s.t. h̃H

a(lω1, lα1) = 1,

for l = 1, · · · , L1, (14)

where a(ω1, α1) =
[

1 ejα1 · · · ej(I−1)α1
]T ⊗

[

1 ejω1 · · ·
ej(N−1)ω1

]T
. The well-known solution to this optimization problem

is:

ĥ = R
−1

A(ω1, α1)
(

A
H(ω1, α1)R

−1
A(ω1, α1)

)−1

1L1 ,

with A(ω1, α1) = [a(ω1, α1) · · · a(L1ω1, L1α1)], 1L1 being an
L1 × 1 vector with all the elements equal to 1. Then, we obtain the
estimate of pitch and DOA jointly by maximizing the output power
as:

(ω̂1, α̂1) = arg max
ω̃1,α̃1

1
H
L1

[

A
H(ω̃1, α̃1)R

−1
A(ω̃1, α̃1)

]−1

1L1 .

In most cases, it is sufficient to obtain coarse estimates of both the
fundamental frequency and DOA from the fine grids of their admis-
sible ranges. However, for some applications it is necessary to refine
estimates, which is achieved by using a gradient method, that is, to
select the coarse estimates as initial values, and calculate the esti-
mates iteratively as:
[

ω̂
(i+1)
1

α̂
(i+1)
1

]

=

[

ω̂
(i)
1

α̂
(i)
1

]

+ δ · ∇J(ω̃1, α̃1)|
ω̃1=ω̂

(i)
1 ,α̃1=α̂

(i)
1

,

where i and i + 1 are the iteration indexes, δ > 0 is a small
constant which is found using a line search algorithm [19], and

∇J(ω̃1, α̃1) =
[

∂J(ω̃1,α̃1)
∂ω̃1

∂J(ω̃1,α̃1)
∂α̃1

]T

is the gradient of J(ω̃1, α̃1).

According to the rules of matrix derivative [20], ∇J(ω̃1, α̃1) is ex-
pressed as:

∇J(ω̃1, α̃1)

=

[

∂J(ω̃1,α̃1)
∂ω̃1

∂J(ω̃1,α̃1)
∂α̃1

]

= −2Re

{[

1H
L1

Λ1A
H(ω̃1, α̃1)R

−1B1,1Λ11L1

1H
L1

Λ1A
H(ω̃1, α̃1)R

−1B2,1Λ11L1

]}

,

where Λ1 =
(

AH(ω̃1, α̃1)R
−1A(ω̃1, α̃1)

)−1
, and B1,1 =

∂A(ω̃1,α̃1)
∂ω̃1

, B2,1 = ∂A(ω̃1,α̃1)
∂α̃1

. In practice, we substitute the

covariance matrix estimate R̂ of (3) for the unknown R, to accom-
plish the estimation with the optimal filtering method. All the above
steps constitute the RIAA-OF estimator.

2.3. Multi-Pitch Estimation

Now, we proceed to deal with the multi-pitch case. The covariance
matrix estimation in the multi-pitch scenario is the same as that in the
single-pitch case. As for the joint parameter estimation, we solve the
following optimization problem, and find the peaks as the estimates
of DOA and pitch of the corresponding sources:

(ω̂k, α̂k) = arg min
ω̃k,α̃k

1
H
Lk

[

A
H(ω̃k, α̃k)R̂

−1
A(ω̃k, α̃k)

]−1

1Lk
,

where A(ω̃k, α̃k) = [a(ω̃k, α̃k) · · · a(Lkω̃k, Lkα̃k)] , k =
1, 2, · · · ,K.

3. SIMULATION RESULTS

In this section, we perform Monte Carlo simulations to evaluate
the joint estimation accuracy of the RIAA-OF method for pitch
and DOA. The estimation performance is evaluated using the mean

square error (MSE): MSEf =
√

1
S

∑K

k=1

∑S

s=1(ω̂
(s)
k − ωk)2

and MSEα =
√

1
S

∑K

k=1

∑S

s=1(α̂
(s)
k − αk)2, with ωk, αk and

ω̂
(s)
k , α̂

(s)
k being the true parameter values and their estimates, re-

spectively, and S being the number of trials. We use the number
of iterations as the stopping criterion as illustrated above. All the
results provided are averages of 100 independent runs.

Firstly, we provide an example of single-pitch estimation. The
harmonic signal consists of L = 4 sinusoids with pitch ω1 =

√
2 ·

0.5 and DOA α1 =
√
2 ·0.4. The parameter setting is listed in Table

3. Fig. 1 shows the MSEs of pitch and DOA estimates by the RIAA-
OF method and its non-relaxed version (which is termed as IAA-
OF method here) as well as CRLB, with N = 20, I = 10,K1 =
10N,K2 = 10I . It is seen that the MSEs of the RIAA-OF estimates
are close to CRLB in the whole SNR range, and there is about 3 dB
gap from CRLB. Although the MSEs of the IAA-OF estimates are
also close to CRLB in the middle SNR zone, their accuracy keeps
nearly constant when the SNR becomes high. This is due to the
relatively coarse estimation of the covariance matrix in the case of
high SNR.

DOA l Frequency Amplitude Initial Phase
1

√
2 · 0.5 2.0 1√

2 · 0.4 2
√
2 · 1.0 1.5 2

3
√
2 · 1.5 2.5 3

4
√
2 · 2.0 4.0 4

Table 3. Simulation setting of single-pitch estimation

The next example is about multi-pitch estimation. The harmonic
signal consists of K = 2 pitches, each with Lk = 2 tones. The
parameter setting is listed in Table 4, and Fig. 2 shows the MSE
results with N = 20, I = 10, K1 = 10N,K2 = 10I . We can also
see that the MSEs of the RIAA-OF method keep about 5 dB gap
from CRLB in the whole SNR range. Still, the performance of the
IAA-OF method becomes worse than that of the RIAA-OF method
when the SNR is high.

k DOA lk Frequency Amplitude Initial Phase
1

√
2 · 0.4 1

√
2 · 0.5 2.0 1

2
√
2 · 1.0 1.0 2

2
√
2 · 0.6 1

√
2 · 0.7 2.0 3

2
√
2 · 1.4 1.0 4

Table 4. Simulation setting of two-pitch estimation

4. DISCUSSION

The work presented here is focused on the joint estimation of pitch
and DOA for multi-channel harmonic sinusoidal signal, whose pa-
rameter estimation is conducted with the optimal filtering method,
while whose covariance matrix estimation is based on the IAA tech-
nique. Thus, our joint estimation needs no user-defined parame-
ter. In addition, to keep the covariance matrix estimation reliabil-
ity, the relaxation technique is utilized. The work of [8] is based on
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Fig. 1. MSEs of single-pitch estimation versus SNR for: (a) Pitch
and (b) DOA.

the NLS method, and encounters decoupling difficulty when deal-
ing with multi-pitch estimation [9]. The work by Zhou et al. [14]
is based on two-stage estimation instead of joint estimation, which
encounters difficulty in differentiating the overlapping harmonics.
The work by Jensen et al. [10] utilizes the optimal filtering method,
while it estimates the covariance matrix by data partitioning and av-
eraging in the time domain. Consequently, the user-defined param-
eter such as the size of the covariance matrix should be chosen to
achieve accurate estimation performance properly.

In this paper, the RIAA-OF method for joint estimation of the
fundamental frequency and DOA of the multi-channel harmonic si-
nusoidal signal is proposed. In our approach, the covariance matrix
is estimated based on the IAA and relaxation techniques. The pa-
rameters of interest are estimated with the optimal filtering method
and the covariance matrix estimate, which needs no user-defined pa-
rameter. Due to the use of relaxation, the covariance matrix estima-
tion keeps its performance when the sources are off-grid. Simula-
tion results show that the RIAA-OF method bears better accuracy
compared with its non-relaxed version for the off-grid sources. And
its performance is close to CRLB for the single-pitch and two-pitch
estimation. Moreover, the RIAA-OF method keeps its good perfor-
mance in the existence of the difference in noise level. Further works
include dealing with higher-dimensional and adaptive pitch-DOA es-
timation problems, detection of harmonics, and their application to
speech and audio signal processing.
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Fig. 2. MSEs of two-pitch estimation versus SNR for: (a) Pitch and
(b) DOA.
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