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ABSTRACT

To post-process outputs of speech separation systems with
harmonic enhancement, it is normally required to estimate
the fundamental frequency. This paper evaluates the perfor-
mance of a few representative robust pitch estimation algo-
rithms on speech reconstructed from two-speaker mixture sig-
nals. The separation outputs obtained by two state-of-the-art
single-channel separation algorithms are used for the evalu-
ation. A recently proposed sparsity-based pitch estimation
method is applied to the separated speech and a new pitch
tracking algorithm is proposed. Experimental results show
that on the separated speech the proposed method consistently
surpasses the others with significantly low gross error rate,
which is similar to the gross error rates of the other methods
on clean speech.

Index Terms— Robust pitch estimation, harmonic noise,
speech separation, harmonic enhancement

1. INTRODUCTION
Automatic detection of fundamental frequency (i.e., pitch or
F0) [1] from acoustic signal is fundamental for numerous ap-
plications of speech signal processing, e.g., speech coding,
speech and speaker recognition, and harmonic enhancement
(HE) [2, 3]. HE refers to the process of enhancing or restor-
ing harmonic components of a speech signal and suppressing
the non-harmonic ones. It is an effective approach to improv-
ing the quality of noise-corrupted speech as well as processed
speech outputted by enhancement systems [2, 3, 4, 5]. In our
previous study of speech separation [6], it was also suggested
that performing HE on the separation output could be ben-
eficial for improving speech quality. For effective HE, it is
important to have correct estimation of the pitch.

To improve pitch estimation accuracy is one major re-
search focus. There have been many robust algorithms de-
veloped [7, 8, 9, 10, 11, 12]. Most of the algorithms were de-
signed for general additive noise such as white noise, speech-
spectrum-shaped noise or car noise. These types of noise are
distinguishable from speech as they do not have harmonic
structure. There were few studies on applying pitch estima-
tion algorithms to noise that has harmonic structure.

In this study, we investigate the performance of several
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representative methods of robust pitch estimation on sepa-
rated speech. In speech separation, a mixture of speech sig-
nals is given and a separation algorithm is used for recon-
structing the speech of a target speaker. In the reconstructed
speech, the residual noise generally exhibits harmonic struc-
ture, which comes from the interfering speech source. Fac-
torial hidden Markov models based algorithm [13] is one of
the state-of-the-art separation methods. It uses acoustic mod-
els of the log spectrum of the sources as prior information
for separation. It was observed that in the separated output
there usually resided harmonic information from the interfer-
ing source (e.g. phase information [14]).

To deal with harmonic noise in the separated speech, we
propose to apply a sparsity-based pitch estimation algorithm
that we recently proposed in [15]. This algorithm utilizes
prior speech information and l1-regularized maximum like-
lihood (ML) estimation to improve estimation accuracy. We
derive a localized formulation of this algorithm for separated
speech and propose a pitch tracking algorithm for determin-
ing pitch track of the target speaker. The proposed approach
with four other robust algorithms are evaluated and compared
on speech separation outputs obtained by two recently devel-
oped single-channel separation algorithms.

2. ROBUST PITCH ESTIMATION ALGORITHMS
Pitch estimation is to detect the fundamental frequency of a
quasi-periodic audio signal. The goal of noise-robust pitch
estimation is to determine the fundamental frequency of un-
derlying speech from a distorted observation.
2.1. Baseline approaches
CEP: Cepstrum is defined as the inverse Fourier transform of
the log magnitude spectrum. Cepstrum of voiced speech has
a sharp peak that corresponds to the fundamental frequency.
The standing-out of this peak was found to be robust to noise
[16]. By locating the strongest cepstral peak, the fundamental
frequency is determined [17].
RAPT: The robust algorithm for pitch tracking (RAPT) [18]
is a widely used time-domain approach. It employs two-pass
normalized-cross correlation function, at reduced and original
sampling rate, to reduce computational load and obtain a set
of F0 candidates. Dynamic programming is used to determine
the best pitch track.
PEFAC: The algorithm of pitch estimation filter with am-
plitude compression (PEFAC) [11] is a recently proposed
frequency-domain method. It uses amplitude compression to
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attenuate narrowband noise, and then applies comb-filtering
in log-frequency power spectral domain to sum the energy of
hypothesized pitch harmonics. Pitch candidate that has the
largest accumulated energy is selected. The filter can also
combat noise that has smoothly varying power spectrum.
TAPS-AutoC: As described in [10], the temporally accumu-
lated peak spectrum (TAPS) is computed by accumulating
spectral peaks over consecutive frames. After accumulation,
speech harmonic peaks are concentrated around the funda-
mental frequency and its multiples, while spectral peaks of
noise tend to be irregularly located with relatively small am-
plitudes. Autocorrelation of TAPS is used to determine the
frequency separation between the harmonic peaks and give
an estimation of the fundamental frequency.

3. SPARSITY-BASED PITCH TRACKING
Based on TAPS, a sparsity-based framework was proposed for
pitch estimation by employing prior information and sparse
reconstruction techniques [15, 19]. In this section, we first
briefly review the algorithm TAPS-l1-ML [15] and derive a
localized formulation for separated speech. A pitch tracking
algorithm is then proposed to determine pitch track of the tar-
get speaker.
3.1. Sparsity-based pitch estimation (TAPS-l1-ML)
Let p ∈ RM×1 denote a peak spectrum, obtained by retaining
peaks of the magnitude spectrum and setting the others to 0.
Let y denote a TAPS, obtained by summing p of several, say
K consecutive frames. Given an over-complete set of clean
peak spectrum exemplars A = [p̄1 p̄2 · · · p̄n · · · p̄N ] ∈
RM×N , with N � M , y is modeled as a sparse linear com-
bination of the exemplars

y = Ax + v, (1)
where x ∈ RN×1 is a weight vector assumed K-sparse (at
most K nonzero elements), while v ∈ RM×1 represents
noise in the peak spectrum domain.

Given v ∼ N (µ,Σ), the sparse weight x is estimated by
the following l1-regularized minimization [15]:

min
x

(Ax− y + µ)TΣ−1(Ax− y + µ)

subject to ‖x‖1 ≤ K and x > 0.
(2)

Each non-zero element of the estimated weight x̂ corre-
sponds to a constituent exemplar, which indicates a candidate
pitch value. Hence, a set of pitch candidates {f0c(q)|1 ≤ q ≤
Q} is obtained with their corresponding weights {x̂c

q|1 ≤ q ≤
Q} available [15, 20]. For a pitch candidate f0c(q), a confi-
dence measure [20] is computed as

PF0(q) =
x̂c
q∑Q

q=1 x̂
c
q

. (3)

The candidate that has the largest confidence measurement is
selected as the estimated pitch, i.e., f̂0 = f c

0(q∗) with q∗ =
arg maxq(PF0(q)).

This approach utilizes prior information of both speech
(i.e., A) and noise (i.e., µ,Σ) for pitch estimation. It was

shown to have good performance even at very low SNRs (e.g.
< −5 dB) [15, 19].
3.2. Localized TAPS-l1-ML for separated speech
Since residual noise in separated speech usually contains a
small portion of the interfering source, v as in Eq. (1) may
exhibit some harmonic components of the interfering speaker.
It is nontrivial and could even be very difficult to learn the
Gaussian parameters µ and Σ for v in practice. Here we
consider that v can be represented by the following sparse
combination of another set of exemplars Av ,

v = Avxv + n, (4)
with n ∼ N (0, I). Combining Eq. (1) and (4), we obtain

y =
[

A Av

] [ x
xv

]
+ n.

Denote the above concatenated exemplar matrix and sparse
weight vector as A† and x†, respectively. We obtain

y = A†x† + n. (5)

With the same principle as in Section 3.1, x† is estimated by
min
x†

‖y −A†x†‖22
subject to ‖x†‖1 ≤ K +Kv and x† > 0,

(6)

where Kv reflects the sparseness of xv .
The use of (6), instead of (2), avoids the difficulty of learn-

ing µ and Σ, since obtaining A† could be easier. The basic
requirement [15] for constructing A† is that it should be com-
plete enough to resolve the harmonic structure in y, includ-
ing that of the target speaker as well as that of the interfer-
ing speaker. Hence A† can be constructed by recruiting peak
spectrum exemplars from both speakers. However, employ-
ing (6) on the other hand increases the difficulty of determin-
ing the correct pitch for the target speaker, because now x†

also reveals harmonic components of the interfering speaker.
In the following, we propose a pitch tracking algorithm for
the TAPS-l1-ML method, with the goal of producing a cor-
rect pitch track for the target speaker.
3.3. Pitch tracking algorithm for TAPS-l1-ML
There are a number of pitch candidates at each frame. The
purpose of pitch tracking is to find the best path of candidates
across all frames. Dynamic programming (DP) is used here.
With DP, the best path is defined as the one with highest score.
The score for f0c(q)|r, i.e., the qth pitch candidate at the rth
frame, is defined as

SCR(q, r) = SCRH(q, r)+
SCRCF0(q, r, r − 1) + SCRCMF0(q, r,N). (7)

SCRH(q, r) gives a score for the harmonicity of the hy-
pothesized pitch f0c(q)|r. Since the confidence measure de-
fined in Eq. (3) reflects strength of the harmonic compo-
nents of the candidate [20], it is used as a harmonicity index.
SCRH(q, r) is computed by

SCRH(q, r) = PF0(q)|r, (8)
where |r indicates that it is computed for the rth frame.
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SCRCF0(q, r, r − 1) gives a score for the optimal path
that connects f0c(q)|r to frame r − 1. When determining a
pitch track, continuity of the path is a major consideration. In
[3], the probability of percentage pitch change between neigh-
boring frames, i.e., Pδ( δf0f0 ), was analyzed. It was shown
that large pitch change was less likely to happen. It is thus
preferred to connect f0c(q)|r to the previous-frame candidate
whose pitch value is the closest. We further take into account
the scores SCR(·, r − 1) of the previous frame, and define

SCRCF0(q, r, r − 1) =

max
l


Pδ

„
f0

c(q)|r − f0
c(l)|r−1

f0
c(q)|r

«
· SCR(l, r − 1)

ff
, (9)

where Pδ( δf0f0 ) follows the the empirical one described in [3].
The term Pδ(·) · SCR(l, r− 1) computes a score for connect-
ing f0c(q)|r with f0c(l)|r−1. The max(·) operation implies
the selection of an optimal backward path for the candidate
f0

c(q)|r.
SCRCMF0(q, r,N) gives a score for encouraging consis-

tence between f0c(q)|r and F0 mean of previous voiced seg-
ments. We define

SCRCMF0(q, r,N) = Pδ

(
f0

c(q)|r − f̄0|Nr−1

f0
c(q)|r

)
, (10)

where f̄0|Nr−1 is the mean of reliable F0s estimated in the past
N frames, covering at lease one previous voiced segment. If
a candidate pitch is selected as the estimated one, it will be
marked as reliable given that its harmonicity score SCRH(·, ·)
is larger than a threshold [20].

In summary, the proposed score SCR(·, ·) favors pitch
candidates of strong harmonicity, continuity of pitch track and
consistence of F0 mean in consecutive voiced segments.

For off-line processing, the scores are first computed in a
forward manner, i.e., from the first frame to the last frame.
Then by backward tracing, a global optimal pitch track is
determined. Here we consider on-line processing scenario,
where information of future frame is not available. For such
case, pitch for the current frame r is determined as f̂0|r =
f c
0(q∗)|r with q∗ = arg maxq(SCR(q, r)).

4. EXPERIMENTS
4.1. Experimental setup
A set of speech data taken from the GRID corpus [21] is used
for evaluation. The data set consists of utterances from 6
speakers, namely T1 (Male), T2 (Male), T17(Male), T18 (Fe-
male), T24 (Female) and T25 (Female). There are 25 utter-
ances for each speaker. The utterances were mixed in the fol-
lowing way: T1+T2 (Male+Male), T17+T18 (Male+Female),
and T24+T25 (Female+Female) with 0 dB signal-to-signal ra-
tio. After mixing, there were 625 mixture signals for each
target speaker. The mixture signals were then processed by
two single-channel speech separation algorithms, i.e., facto-
rial HMM based algorithm (FHMM) [13] and dynamic condi-
tional random fields based algorithm (DCRF) [22]. The goal
was to reconstruct the speech of the target speaker from the

Table 1: SNR and PESQ of the separated speech signals
FHMM16as DCRF16as FHMM512as DCRF512as

SNR(dB) 3.75 5.37 6.59 7.73
PESQ 1.72 2.11 2.39 2.60
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Fig. 1: Fundamental frequency distribution of the speakers

mixture signal. Details for the training of these two separation
algorithms can be found in [22]. We used two parameter set-
tings for both FHMM and DCRF, namely 16as (i.e., 16 acous-
tic states) and 512as (i.e., 512 acoustic states). Table 1 shows
the objective quality measurements of the separated speech.
The full set of separated signals1 (625 utterances per speaker
per separation condition) were re-sampled at 8 kHz. They are
used for the evaluation of pitch estimation algorithms.

Pitch estimation accuracy is evaluated in terms of gross
pitch error (GPE) and fine pitch error (FPE) [23]. An es-
timated f̂0 value is regarded as a GPE if f̂0 6∈

[
f true
0,tar −

ε, f true
0,tar +ε

]
. Otherwise, it is regarded as an FPE. f true

0,tar is the
reference pitch of the target speaker. ε = 16 Hz. For GPE,
the error rate in percentage is calculated. For FPE, the root
mean square (RMS) of the deviation |f̂0−f true

0,tar| is computed.
Reference pitch and voicing status for result verification were
first obtained by using the software Wavesurfer [24] and then
manually verified. Distribution of the fundamental frequency
of the speakers is shown in Fig. 1.

CEP was implemented following the algorithm in [17].
For RAPT and PEFAC, their implementations in Voicebox
[25] are used. Frame size and frame shift are 60 ms and 12
ms, respectively. For TAPS-based algorithms, the number of
accumulated peak spectrum K is set to 4 [10]. Peak spectrum
for computing TAPS is obtained every 12 ms for a signal seg-
ment of 24 ms. Hence the TAPS-based methods also estimate
a pitch value from a signal segment of 60 ms. FFT size is set
to 1024. The dimension of peak spectrum vector isM = 102,
which covers the frequency range from 0 Hz to 800 Hz.

For TAPS-l1-ML, 150(25× 6) utterances, from the same
group of speakers and not overlapping with the testing data,
were used to train the prior information matrix A† [15]. There
were 100 exemplars obtained for each speaker. These exem-
plars were concatenated to form an exemplar matrix A† ∈
R600×102. Libqp [26] is used to solve the quadratic program-
ing problem (6), where Kv is empirically set to 1. For the
tracking algorithm, N for Eq. (10) is set to cover a signal
duration of 500 ms and the threshold of SCRH(·, ·) for deter-
mining a reliable estimation is set to 0.6.

1Samples available online: www.ee.cuhk.edu.hk/~ytyeung/dmmse.htm
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Table 2: GPE and FPE results on clean and mixed speech

CEP RAPT PEFAC
TAPS-
AutoC

TAPS-l1-
ML

C
le

an GPE 8.7% 5.3% 4.7% 3.0% 1.4%
FPE 5.32Hz 3.02Hz 3.50Hz 5.39Hz 3.21Hz

M
ix

ed GPE 43.2% 48.5% 43.7% 45.5% 37.8%
FPE 6.39Hz 5.67Hz 5.35Hz 6.59Hz 5.90Hz

Table 3: DGPE rate (%) for VV and VVD of mixed speech

CEP RAPT PEFAC
TAPS-
AutoC

TAPS-l1-
ML

VV 9.0 21.4 10.7 15.1 3.7
VVD 10.1 30.3 15.3 22.3 5.9

4.2. Results on clean and mixed speech
Table 2 shows the results of the pitch estimation algorithms
on clean and mixed speech. It can be seen that TAPS-l1-ML
has the lowest GPE rates. FPE results of RAPT, PEFAC and
TAPS-l1-ML are closely low.

For mixed speech, there were 625 mixture signals for each
speaker. For a speaker, the estimated pitch tracks of the mix-
ture signals were compared to the speaker’s reference pitch
to compute the results. Since a mixture signal was associ-
ated with two speakers, an estimated pitch track was com-
pared twice for error counting. To further evaluate the per-
formance of the algorithms on mixed speech, we compute an-
other type of error rate for the following two kinds of signal
slots:

VV Time slots where signal components of both speakers
are all voiced;

VVD Time slots where signal components of both speakers
are all voiced and the fundamental frequencies of both
speakers are different (> 2ε).

In VV, fundamental frequencies of both speakers may be the
same. For instance, this situation is very likely to happen in
the T1+T2 case (see Fig. 1). In VVD, fundamental frequen-
cies of the speakers are distinct.

For mixed speech, an estimated pitch is regarded as a dual
gross pitch error (DGPE) if it does not hit either one of the true
pitch values (with ±ε range). DGPE rate indicates how well
a pitch estimation algorithm can perform in identifying either
one of the two fundamental frequencies in a voiced-voiced
mixture signal. Table 3 gives the DGPE rates of the evaluated
algorithms. It can be seen that DGPE rates of TAPS-l1-ML
are significantly lower than the others for both VV and VVD.

4.3. Results on separated speech
Table 4 gives the GPE results for pitch estimation on the sep-
arated signals. Overall GPE rates computed from all voiced
frames as well as GPE rates computed from VV and VVD
frames are given. It can be observed that for both separa-
tion algorithms, GPE rates of all pitch estimation algorithms
decrease when the number of acoustic state increases. This
agrees with the results in Table 1 that the quality of separated

Table 4: GPE rate (%) on separated speech

CEP RAPT PEFAC
TAPS-
AutoC

TAPS-l1-
ML

F
H

M
M

1
6
a
s 24.6 17.2 16.5 14.3 7.3

VV 30.4 22.9 20.9 19.9 10.4

VVD 35.7 25.9 23.0 22.7 12.0

D
C

R
F

1
6
a
s 21.1 14.3 11.5 11.7 6.0

VV 26.1 19.1 15.0 16.2 8.5

VVD 29.5 21.1 16.0 18.1 9.5

F
H

M
M

5
1
2
a
s 16.7 11.8 10.2 8.8 4.4

VV 19.4 15.0 12.7 11.9 6.1

VVD 20.2 14.9 11.0 11.5 6.1

D
C

R
F

5
1
2
a
s 14.9 10.0 7.8 7.4 3.9

VV 17.0 12.3 9.6 9.9 5.4

VVD 16.9 11.4 8.1 8.9 5.0

speech is improved with more acoustic states. It is also shown
that TAPS-l1-ML consistently surpasses the other methods
for all conditions. For the instance of FHMM512as, GPE rate
of TAPS-l1-ML is 4.4%, which is lower than the GPE rate of
PEFAC on clean speech, i.e., 4.7%.

As for FPE, results at different separation conditions have
a similar trend as that of the clean speech case shown in Ta-
ble 2. FPE of RAPT tends to be the lowest, while FPE of
PEFAC and TAPS-l1-ML are both close to the lowest. CEP
and TAPS-AutoC generally have the largest FPE. For the in-
stance of FHMM512as, the FPE results (in Hz) for RAPT,
PEFAC, TAPS-l1-ML, TAPS-AutoC and CEP are 3.80, 3.98,
4.28, 5.63 and 5.81, respectively.

5. CONCLUSION AND RELATION TO PRIOR WORK
This paper evaluated four representative and a new pitch esti-
mation algorithms on speech reconstructed from two-speaker
mixture signals. The sparsity-based algorithm, namely TAPS-
l1-ML, was applied to the separated speech. Based on TAPS-
l1-ML, a localized formulation was derived and a pitch track-
ing algorithm was proposed. Experimental results confirmed
that the proposed algorithm consistently surpassed the other
algorithms with significantly low gross error rate. Gross error
rate of the proposed algorithm on the separated speech was
similar to the gross error rates of the others on clean speech.
With the fundamental frequency more accurately estimated,
effective harmonic enhancement can be achieved to further
improve the quality of separated speech.
[Relation to prior work] This study is an extension of our
prior research on robust pitch estimation [10, 15, 19, 20]. It
extends the application scope of the sparsity-based pitch es-
timation method [15, 20] and verifies its ability for coping
with noise that has harmonic structure. It connects the previ-
ous study on speech separation [6, 22] and harmonic enhance-
ment [5, 27], as it is our first step in developing a harmonic en-
hancement algorithm for post-processing of separated speech.
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[24] K. Sjölander and J. Beskow, “Wavesurfer - an
open source speech tool,” 2000, Available online:
http://www.speech.kth.se/wavesurfer/.

[25] M. Brookes, “VOICEBOX: Speech processing tool-
box for MATLAB,” Dec. 1997, Available online:
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html.

[26] V. Franc and V. Hlavac, “A novel algorithm for
learning support vector machines with structured out-
put spaces,” Research Report K333–22/06, CTU–
CMP–2006–04, May 2006, Program available online:
http://cmp.felk.cvut.cz/~xfrancv/libqp/html/.

[27] F. Huang, T. Lee, and W. B. Kleijn, “A method of speech pe-
riodicity enhancement based on transform-domain signal de-
composition,” in Proc. EUSIPCO 2010, Aug. 2010, pp. 984–
988.

6811


