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ABSTRACT
In this paper, an exact subspace method for fundamental fre-
quency estimation is presented. The method is based on the
principles of the MUSIC algorithm, wherein the orthogonal-
ity between the signal and and noise subspace is exploited.
Unlike the original MUSIC algorithm, the new method uses
an exact measure of the angles between the subspaces. This
makes a difference, for example, when the fundamental fre-
quency is low, for real signals, or when the number of sam-
ples is low. In Monte Carlo simulations, the performance of
the new method is compared to a number of state-of-the-art
methods and is demonstrated to lead to improvements in cer-
tain, critical cases. Moreover, it is demonstrated on a speech
signal that the method can be applied to speech signals and is
robust towards noise.

Index Terms— Speech analysis, fundamental frequency
estimation, pitch estimation, subspace methods

1. INTRODUCTION

Many signals of interest to mankind are periodic or approxi-
mately so. This is, for example, the case for voiced speech.
Such signals can be decomposed into sums of sinusoids
whose frequencies are integer multiples of a fundamental
frequency and the problem of finding this fundamental fre-
quency, sometimes also referred to as pitch estimation, is the
topic of the present paper. Pitch estimation is an important
topic in speech processing as it has a multitude of differ-
ent applications, including separation [1], localization [2],
dereverberation [3], feedback cancellation [4], diagnosis of
illnesses [5], and detection of emotion and stress [6]. As a
result, a host of different methods have been proposed over
the years for solving this important problem, e.g., [7–15],
and we refer the interested reader to [16] for an overview.
Many of these methods are, implicitly or explicit, based on
asymptotic approximations and this causes trouble in certain
situations. This is the case for a low number of observations,
for low fundamental frequencies and for real signals.

In this paper, we propose a new method for dealing with
these problems in the context of fundamental frequency esti-
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mation. It is a subspace method based on the orthogonality
between the signal and noise subspaces, a principle known
from the classical MUSIC algorithm [17]. Unlike the MUSIC
algorithm and its adaptation to real signals [18], the proposed
method method is based on an exact measure of the angles
between subspaces [19–21]. It is generally not feasible to
employ such exact measures in unconstrained frequency es-
timation with several nonlinear parameters. However, it is
well-suited for the fundamental frequency estimation prob-
lem as it only involves one nonlinear parameter.

The remaining part of this paper is organized as follows:
In Section 2, we introduce the basic signal model, the under-
lying assumptions and define the problem at hand. Then, in
Section 3 the proposed method is presented. We then inves-
tigate the performance of the proposed method under vari-
ous conditions and compare it to a number of state-of-the-art
methods in Section 4. Finally, we conclude on our work in
Section 5.

2. COVARIANCE MATRIX MODEL

We will now introduce the problem at hand and the signal
model. The observed real signal x(n) is comprised of L sinu-
soidal components having frequencies that are integer multi-
ples of a fundamental frequency ω0, real amplitude Al > 0,
and phases φl ∈ [0, 2π). Moreover, we assume that an addi-
tive noise source e(n) is present, which is here assumed to be
white with variance σ2. The signal model can be expressed
for n = 0, . . . , N − 1 as

x(n) =

L∑
l=1

Al cos (ω0ln+ φl) + e(n). (1)

The problem at hand is then to estimate ω0, which, for a given
L, can be in the range ω0 ∈ (0, πL ). For a collection of sam-
ples {x(n)}, the model above can be expressed as

x(n) = Za + e(n), (2)

with the following definitions:

x(n) = [ x(n) x(n+ 1) · · · x(n+N − 1) ]
T (3)

Z = [ z(ω0) z∗(ω0) · · · z(ω0L) z∗(ω0L) ] , (4)
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(6)

e(n) = [ e(n) e(n+ 1) · · · e(n+M − 1) ]T . (7)

The covariance matrix of x(n) is [18]

R =E
{
x(n)xH(n)

}
= ZPZH + σ2I (8)

where (·)H denotes the Hermitian transpose, and the ampli-
tude covariance matrix E

{
aaH

}
= P is given by
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Assuming that the phases φl are uniformly distributed and
independent over l we have that E

{
Ak

2 e
jφk
}

= 0 and that
E
{
Ak

2 e
jφk Al

2 e
−jφl

}
= Ak

2 E
{
ejφk

}
Al

2 E
{
e−jφl

}
= 0 for

k 6= l. Moreover, for k = lwe get that E
{
Ak

2 e
jφk Ak

2 e
−jφk

}
=

A2
k

4 . Therefore, the amplitude covariance matrix P becomes
P = 1

4diag
([
A2

1 A
2
1 · · · A2

L A
2
L

])
, which means that the

diagonal structure obtained for complex signals is retained
for real signals, and the so-called covariance matrix model,
therefore, still holds.

The eigenvalue decomposition (EVD) of the covari-
ance matrix is R = UΓUH , where Γ is a diagonal ma-
trix containing the positive eigenvalues, γk, ordered as
γ1 ≥ γ2 ≥ . . . ≥ γM . Moreover, it can easily be seen
that γ2L+1 = . . . = γM = σ2. U contains the M orthonor-
mal eigenvectors of R, i.e., U =

[
u1 · · · uM

]
. Let

S be formed from a subset of the columns of this matrix as
S =

[
u1 · · · u2L

]
. We denote the subspace spanned

by the columns of S as S = R (S) and refer to it as the signal
subspace. Similarly, let G be formed from the remaining
eigenvectors as G =

[
u2L+1 · · · uM

]
. We refer to

the space G = R (G) as the noise subspace. Using these
definitions, we now obtain U

(
Γ− σ2I

)
UH = ZPZH . In-

troducing Ψ = diag([ γ1 − σ2 · · · γ2L − σ2 ]), this leads to
the following partitioning of the EVD:

R =
[

S G
]([ Ψ 0

0 0

]
+ σ2I

)[
SH

GH

]
, (10)

which shows that we may write SΨSH = ZPZH . As the
columns of S and G are orthogonal and R (Z) = R (S), it
follows that ZHG = 0, which is the subspace orthogonality
principle used in the MUSIC algorithm [17].

3. PROPOSED METHOD

In practice, the estimated noise subspace eigenvectors will not
be perfect due to the observation noise and finite observation

lengths, and the above relation is, therefore, only approxi-
mate. A measure must then be introduced to determine how
close a candidate model Z is to being orthogonal to G. Tra-
ditionally, this has been done using the Frobenius norm [17].
However, this measure is only an accurate measure of the an-
gles between the two spaces for orthogonal vectors in both Z
and G, and, the asymptotic orthogonality of the column of Z
may not always be accurate. Instead, we propose to measure
the orthogonality as follows. The principal angles {ξk} be-
tween the two subspaces Z and G having projection matrices
ΠZ and ΠG, are defined recursively for k = 1, . . . ,K as [20]

cos (ξk) = max
y

max
z

yHΠZΠGz

‖y‖2‖z‖2
(11)

, yHk ΠZΠGzk = κk. (12)

where K is the minimal dimension of the two subspaces, i.e.,
K = min{2L,M − 2L} and yHyi = 0 and zHzi = 0
for i = 1, . . . , k − 1. This results in a set of angles that are
bounded and ordered, i.e., 0 ≤ ξ1 ≤ . . . ≤ ξK ≤ π

2 . As
can be seen, {κk} are the ordered singular values of the ma-
trix product ΠZΠG, and the two sets of vectors {y} and {z}
are the left and right singular vectors of the matrix product,
respectively. The singular values are related to the Frobenius
norm of ΠZΠG and hence its trace, denoted with Tr {·}, as
‖ΠZΠG‖2F =

∑K
k=1 κ

2
k. If this Frobenius norm is zero, then

the non-trivial angles are all π2 , i.e., the two subspaces are or-
thogonal. We can use this expression to find the fundamental
frequency as

ω̂0 = argmin
ω0

‖ΠZΠG‖2F . (13)

Finally, (13) can be expressed as

ω̂0 = argmin
ω0

Tr
{

Z
(
ZHZ

)−1
ZHGGH

}
. (14)

We henceforth refer to this estimator as the angles between
subspaces (ABS) method. Interestingly, it is asymptotically
equivalent to the estimator proposed in [22] but is different for
finite M and N in that it takes the possible non-orthogonality
of the sinusoids into account. The estimator requires that
a number of quantities are computed as initialization, i.e.,
only once, namely the EVD of R and the projection ma-
trix for the noise subspace, which results in a complexity
of O((M − L)M2 + M3) with L < M . For each can-
didate fundamental frequency, operations having complexity
O(L2M +M2L+ L3) are computed. Regarding the covari-
ance matrix, we use the sample covariance matrix and note
that it is not required for this method that its estimate has full
rank. It must, however, allow for estimation of a basis for
the signal subspace, which requires that M ≤ N − 2L + 1.
Furthermore, we requre that M ≥ 2L + 1 for the orthogonal
complement to the signal subspace to be non-empty, which
means that we obtain that 2L+1 ≤M ≤ N−2L+1. More-
over, M should be chosen proportionally toN for the method
to be consistent.
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Fig. 1. Real speech signal example. Shown are the spectrograms of the involved signals and the estimates obtained using the
proposed method ABS and RAPT [11] for the clean signal (a) and with exhibition hall noise added at 0 dB SNR (b).

4. EXPERIMENTAL RESULTS

We will start out by demonstrating the applicability of the pro-
posed estimator to speech signals. To do so, we run the esti-
mator on a clean speech signal sampled at 8 kHz and compare
the result to those obtained with the Robust Algorithm for
Pitch Tracking (RAPT) [11]. In this experiment, the imple-
mentation of RAPT from Voicebox [23] is used with standard
settings. The proposed method is used with segments of size
N = 240 and M = 120, and pitches are estimated in the
range 60 Hz to 400 Hz. The model order is estimated using
the principle of [21], which can be integrated into the pro-
posed method, and, as in RAPT, the estimates are smoothed
using [24]. The spectrogram of the clean speech signal is
shown in the top panel of Figure 1(a) while the obtained es-
timates are shown in the bottom panel. As can be seen, both
estimators estimate the pitch well with only a few errors. In
Figure 1(b), the same is shown, only noise, here the exhibi-
tion hall noise from the NOIZEUS corpus [25], has now been
added to the speech signal at 0 dB signal-to-noise ratio (SNR).
It can be seen that RAPT now performs very poorly while the
proposed estimator still works well, despite the poor SNR.

Next, the proposed method is compared to a number of
other estimators using Monte Carlo simulations by generating
signals according to (1) and then applying various estimators
to those signals. The so-obtained parameter estimates are then
compared to the true parameters and the error is measured in
terms of the mean square error (MSE). We compare the pro-
posed method (which, as mentioned, is referred to as ABS) to
the weighted least-squares (WLS) method of [9], the approx-
imate nonlinear least-squares (ANLS) method [7, 8, 16], and
the optimal filtering method (OPTFILT) [16] and the MUSIC-
based method of [22]. Regarding the MUSIC-based method,

the proposed method should outperform it under adverse con-
ditions and they should perform the same for high N and M .
For each set of experimental conditions, 100 realizations are
used and the Cramér-Rao Lower Bound (CRLB) shown is
the average over the exact CRLB. The signals were gener-
ated with the following parameters, except for the parameters
that are varied: a fundamental frequency with ω0 = 0.3129
is used with five harmonics each having unit amplitude and
phases uniformly distributed between−π and π. Segments of
N = 100 samples were used with M = 50 and white Gaus-
sian noise added at a 40 dB SNR. Note that this is the SNR
for the fundamental frequency estimation problem as defined
in [16]. The high SNR is used so that the noise will not be the
limiting factor but rather the asymptotic approximations. The
results are shown in Figures 2(a), 2(b), 2(c), and 2(d) in terms
of the MSE as a function of N , ω0, the SNR and M . From
the figures, a number of interesting observations can be made.
Firstly, it can be seen from Figure 2(a) that all methods per-
form well for a high number of observations, N , except the
ANLS method which does not perform well at all. It can also
be observed that the methods exhibit different threshold be-
havior, but the ABS and MUSIC methods perform similarly
here. This is, however, not the case when the MSE is ob-
served as a function of the fundamental frequency, as shown
in Figure 2(b). From this figure, it can be seen that the MU-
SIC method is indeed improved by avoiding the approximate
measure of orthogonality as is done in the ABS method. In
fact, the ABS method now performs as well as any of the
other methods. This clearly shows that, as claimed, the exact
measure is preferable when dealing with non-orthogonal si-
nusoids. In Figure 2(c), the MSE is depicted as a function of
the SNR. This figure shows that the subspace methods appear
to hold an advantage over the WLS and OPTFILT methods
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Fig. 2. Performance measured in terms of the mean square estimation error (MSE) as a function of (a) the number of samples,
N , and (b) the fundamental frequency, ω0, (c) the SNR, and (d) the covariance matrix size M .

in terms of being robust towards noise. In this case, it does,
though, not appear to matter whether the exact measure of
the ABS method or the approximate one of MUSIC is used.
Finally, the performance is assessed as a function of M , the
covariance matrix size, with the results being shown in Figure
2(d). It can be seen that as long as M is chosen not to low or
too high, its value does appear to be all that critical, although
this may be different for different fundamental frequencies.

5. DISCUSSION

In this paper, a new method for fundamental frequency es-
timation has been presented. The method, which is a sub-
space method, avoids the commonly used asymptotic approx-
imations of other methods, including also the classical MU-
SIC algorithm [17], its real extension [18] and the harmonic

summation method [7], which forms the basis of many state-
of-the-art methods. Instead, the method is based on an ex-
act measure of the angles between subspaces. In simula-
tions, the method was demonstrated to outperform its approx-
imate counterpart for low fundamental frequencies, a situ-
ation where the aforementioned asymptotic approximations
become inaccurate. The experiment involving a noisy speech
signal also clearly demonstrated how the method is robust to
noise compared to the RAPT method [11]. An added ben-
efit of the proposed method is that the principle used herein
can be extended using [21] to account also for an unknown
number of harmonics. While the proposed method is compu-
tationally more intensive than its predecessors, its improved
performance under adverse conditions and generally more ac-
curate estimates may prove beneficial in certain, critical appli-
cations, like diagnosis of illnesses or speech separation.
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