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ABSTRACT

Factorial hidden Markov models (FHMMs) are used for tracking the
pitch of two interacting speakers [1]. In this statistical approach, the
characteristics of each speaker are captured by pre-trained models.
Speaker models that match the test conditions well allow for high
tracking performance, however the availability of such models is un-
realistic. To extend the applicabiliy of the FHMM framework, we
develop an EM-like iterative adaptation algorithm which is capable
to adapt the model parameters to the specific situation, e.g. acoustic
channel, using only speech mixture data. Model adaptation is em-
pirically evaluated using real room recordings of mixture utterances
from the GRID corpus.

Index Terms— Multipitch tracking, factorial HMMs, self-
adaptation, MLLR

1. INTRODUCTION

Recently, a system based on FHMMs and speaker interaction mod-
els has won the monaural speech separation and recognition chal-
lenge [2, 3]. Remarkably, this model slightly outperforms human
listeners on a restricted task [4]. Independently, we developed a sim-
ilar FHMM model for multipitch tracking [1]. These FHMM models
are well-suited for modeling acoustic scenes of multiple interacting
sources. However, these models require speaker/source specific data
for learning which limits the applicability. Some of the most suc-
cessful approaches for model adaptation in the context of speech
recognition are the maximum likelihood linear regression (MLLR)
framework [5, 6], maximum a posteriori (MAP) estimation [7], and
rapid adaptation in eigenvoice space [8]. While these approaches
assume that adaptation data consists of clean speech, methods for
adaptation of undistorted source models from contaminated speech
have been also developed, e.g. in [9], speech and noise – separately
represented by individual models – are combined using the MIX-
MAX model. Rose et al. [10] extended this using a more general
interaction and background noise model based on Gaussian mixture
models (GMMs). In [11], the eigenvoice approach is generalized to
adapt individual speaker models given a superposition of two speech
signals. Other approaches are summarized in detail in [12].

In this paper, we develop an algorithm for model adaptation to
overcome any mismatch between training and testing conditions.
The aim is to adapt universal models learned on data from many
speakers to a novel acoustic environment using only speech mix-
ture data. We propose an EM-based iterative algorithm using MLLR
for adaptation of speaker models from speech mixtures, and demon-
strate multipitch tracking1 results obtained for a distant talking sce-
nario of two speakers which includes room reverberation. Our ap-

This work was supported by the Austrian Science Fund (FWF) under the
project number P25244-N15 and S10610-N13.

1We track the fundamental frequency f0. But we use the term pitch,

proach overcomes the necessity of clean source-specific data for
model adaptation. Furthermore, we constrain MLLR to modifica-
tions on the spectral envelope only which is beneficial in cases of
few adaptation data.

The paper is organized as follows: In Section 2 we introduce
FHMMs and the speaker interaction model. Section 3 presents the
EM-framework for model adaptation. In Section 4 empirical results
are reported. Section 5 concludes with a perspective on future work.

2. FHMMS WITH INTERACTION MODELS

FHMMs are capable to model a mixture of several speakers as a joint
effect of multiple Markov processes evolving in parallel over time.2

By combining two single speaker HMMs using an interaction model,
we obtain the FHMM shown in Figure 1.3
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Fig. 1. FHMM represented as factor graph. The single-speaker emis-
sions s(t)

1 and s
(t)
2 jointly produce the observation y(t).

The hidden random variables (RVs) x(t)
k represent the pitch state

at time t of speaker k. The discrete hidden variable x(t) has |X| =
170 states, where state value ’1’ refers to ’no pitch’ (i.e. unvoiced
speech or silence), and state values ’2’-’170’ encode different pitch
frequencies ranging from 80 to 500Hz. As in [1], the pitch value
of state x ∈ {2, ..., 170} is f0 = 16000

30+x
. Vector s(t)

k ∈ R
D corre-

sponds to D bins of the short-time log-magnitude DFT of speaker
k at time frame t. The dependency of x(t)

k over time is modeled by

usually used in psycho-acoustics, since it is more consistent with previous
literature [13, 1, 14].

2For simplicity we consider the case of two interfering speakers through-
out this section. This is generalized to K speakers subsequently.

3Factor nodes are depicted as shaded rectangles together with their func-
tional description. Hidden variable nodes are shown as white circles, ob-
served variable nodes as gray circles.
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the transition probability p(x
(t)
k |x(t−1)

k ) and the prior distribution is
denoted by p(x

(1)
k ). The dependency of s(t)

k on x
(t)
k is modeled as

GMM according to4

p(sk|xk) = p(sk|Θk,xk
) =

Mk,xk
∑

m=1

α
m
k,xk

N
(

sk|θ
m
k,xk

)

, (1)

where Mk,xk
≥ 1 is the number of mixture components of speaker

k and state xk, and αm
k,xk

denotes the weight of component m;

αm
k,xk

≥ 0 and
∑Mk,xk

m=1 αm
k,xk

= 1. The GMM for state xk is

specified by the parameter set Θk,xk
=

{

αm
k,xk

,θm
k,xk

}Mk,xk

m=1
,

where θm
k,xk

=
{

µm
k,xk

,Σm
k,xk

}

is the mean and diagonal co-
variance of component m. To keep the notation compact, we
use braces to denote a set of RVs from all Markov chains, e.g.
{x(t)

k } := {x(t)
k }Kk=1. At each time frame, the observation y(t) is

considered to be produced jointly by the two single-speaker emis-
sions s

(t)
1 and s

(t)
2 using the mixture-maximization (MIXMAX)

model [9] p(y(t)|s(t)
1 , s

(t)
2 ) = δ

(

y(t) −max(s
(t)
1 , s

(t)
2 )

)

, i.e. the

log-magnitude DFT of two speakers is approximated by the element-
wise maximum of their respective single-speech log-magnitude DFT
y(t) ≈ max(s

(t)
1 , s

(t)
2 ). This approximation is based on the sparse

nature of speech in time-frequency representations where each bin
of a speech mixture spectrogram is dominated by a single speaker.
We obtain the pitch-conditional observation probability p(y|x1, x2)
by marginalization over sk, i.e.

p(y|x1, x2) =

ˆ ˆ

p(y|s1, s2)p(s1|x1)p(s2|x2)ds1ds2. (2)

This can be solved in closed form using single-speaker GMMs
p(sk|xk) and the MIXMAX interaction model, i.e.

p(y|x1, x2) =

M1,x1
∑

m1=1

M2,x2
∑

m2=1

α
m1
1,x1

α
m2
2,x2

(3)

·
D
∏

d=1

{

N (yd|θ
m1,d
1,x1

)Φ(yd|θ
m2,d
2,x2

) + Φ(yd|θ
m1,d
1,x1

)N (yd|θ
m2,d
2,x2

)
}

,

where yd denotes the dth element of y, θmk,d

k,xk
gives the dth element of

the corresponding mean and variance of the single-speaker model of
speaker k, and Φ(y|θ) :=

´ y

−∞ N (x|θ)dx represents the univariate
cumulative normal distribution (details are in [1, 9]).

We perform model training using a set of pitch-labeled single-
speaker utterances either in a speaker dependent (SD) or in a speaker
independent (SI) fashion. For SD training only speaker specific
speech utterances are used, whereas for SI training utterances from a
large amount of different speakers are required. The transition prob-
abilities, p(x(t)

k |x(t−1)
k ) and prior distribution p(x

(1)
k ), are obtained

by maximum likelihood estimation and additional Laplace smooth-
ing using the reference pitch values from the single-speaker record-
ings. The parameters of the single-speaker emission p(s

(t)
k |x(t)

k ) are
obtained by the EM-algorithm [15].

3. MODEL ADAPTATION

The availability of SD models is of great advantage, both in terms
of accuracy as well as correct speaker assignment [1]. Even if we

4We omit the explicit dependence of random variables on t, where appro-
priate throughout the manuscript.

have SD models available, we might encounter different gain [16]
or acoustic channel conditions in the test case, e.g. the spectral char-
acteristics of each source signal might have changed due to multi-
path propagation in a room. Model adaptation is useful to tune the
available speaker models to the specific speaker characteristics and
channel conditions that are present in a previously unseen recording.
The aim is to adapt the model of each speaker involved given only
the observed speech mixture.

3.1. Cepstrally Smoothed MLLR (csMLLR)

For the multi-pitch tracking framework, one individual GMM is used
for each pitch state. The adaptation should not modify or destroy the
harmonicity present in the model. Essentially, only the spectral en-
velopes of a speaker model should be subject to adaptation, while
all fine-spectral structure modeled by each pitch-conditional GMM
should remain unmodified. Hence, changing vocal tract character-
istics and channel conditions can be captured, while still ensuring
that each GMM represents its associated pitch. For this reason, we
propose an affine transform of the log-spectrum mean vectors which
is implicitly constrained in cepstral domain. Furthermore, we as-
sume that the mean parameters of all GMMs associated with speaker
model k are subject to the same transform. The transform T̃k and b̃k
(bias vector) for the mean of speaker k, state xk and component mk

is

µ̂
mk

k,xk
= W

(

T̃kWµ
mk

k,xk
+ b̃k

)

= WT̃kWµ
mk

k,xk
+Wb̃k,

where matrix W denotes the (type I) D × D discrete cosine trans-
form (DCT) matrix:

Wi,j =







1√
2D−2

cos
(

π
D−1

(i− 1)(j − 1)
)

if j ∈ {1, D},

2√
2D−2

cos
(

π
D−1

(i− 1)(j − 1)
)

otherwise,

which essentially maps a mean vector µ from log-spectral to cep-
stral domain.5 The affine transform of the cepstral representation
T̃kWµ

mk

k,xk
+ b̃k is back-transformed by W to log-spectral domain

µ̂
mk

k,xk
.6 We constrain the structure of the cepstral transform matrix

to the form

T̃k =

(

Tk 0

0
T I

)

,

where Tk denotes a C ×C submatrix, I is the (D−C)× (D−C)
identity matrix and 0 the C×(D−C) zero matrix. We constrain the
bias vector b̃k likewise. As a result, only the first C low-order co-
efficients of the cepstral representation of µ are subject to the affine
transform defined by Tk and bk. For C = D, no constraints are
imposed on the transform, and the method produces equivalent re-
sults as MLLR. For small amounts of adaptation data, constraining
the size of C can help to avoid overfitting.

3.2. EM Algorithm for csMLLR-Based FHMM Adaptation

We adapt parameters Tk and bk by maximizing the log-likelihood
under the observed speech mixture7, i.e.

LL({Tk}, {bk}) = ln p(Y|{Tk}, {bk}) (4)

= ln
∑

X
p(X ,Y|{Tk}, {bk}),

5Here, we do assume that µ contains the bias bin at zero Hz, because it
simplifies the application of the DCT transform and related notation.

6Matrix W is an involution, i.e. WW = I.
7The remaining parameters of the model are omitted.
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where

p(X ,Y|{Tk}, {bk}) =

K
∏

k=1

[

p(x
(1)
k )

T
∏

t=2

p(x
(t)
k |x

(t−1)
k )

]

T
∏

t=1

p(y(t)|{x
(t)
k }, {Tk}, {bk})

is the joint distribution of all observed data and hidden variables of
an FHMM with K Markov chains. The distribution of the observa-
tion at one time instance given the hidden pitch states is (cf. (2))

p(y(t)|{x(t)
k }, {Tk}, {bk}) =

˙

p(y(t)|{s(t)
k })

K
∏

k=1

p(s
(t)
k |x(t)

k ,Tk, bk)ds
(t)
1 · · · ds(t)

K

=
∑

{mk}

K
∏

k=1

α
mk

k,xk

˙

p(y(t)|{s(t)
k })

×
K
∏

k=1

p(s
(t)
k |x(t)

k ,mk,Tk, bk)ds
(t)
1 · · · ds(t)

K ,

where

p(s
(t)
k |x

(t)
k ,mk,Tk, bk) =

N (s
(t)
k |WT̃kWµ

mk

k,x
(t)
k

+Wb̃k,Σ
mk

k,x
(t)
k

).

It is difficult to maximize the log-likelihood in (4) directly. Instead,
Jensen’s inequality is applied to construct a lower bound on (4),
which is in general easier to optimize [17]. For any distribution q(·),
and any joint probability p(X ,Y), it follows from Jensen’s inequal-
ity that

ln
∑

X
p(X ,Y) = ln

∑

X
q(X )

p(X ,Y)

q(X )
≥

∑

X
q(X ) ln

p(X ,Y)

q(X )
,

and equality holds if and only if q(X ) = p(X|Y). We systematically
apply Jensen’s inequality to construct the following variational lower
bound on the LL({Tk}, {bk}) in (4):

LL ≥ const +
∑

X
q(X ) ln p(X ,Y|{Tk}, {bk})

≥ const +
∑

X
q(X )

T
∑

t=1

∑

{mk}
q({mk})

× ln

˙

p(y(t)|{s(t)
k })

K
∏

k=1

p(s
(t)
k |x(t)

k , mk,Tk, bk)ds
(t)
1 · · · ds(t)

K

≥ const +
∑

X
q(X )

T
∑

t=1

∑

{mk}
q({mk})

×

˙

q({s(t)
k })

K
∑

k=1

ln p(s
(t)
k |x(t)

k , mk,Tk, bk)ds
(t)
1 · · · ds(t)

K ,

(5)

where const refers to all terms independent of {Tk} and {bk}. This
lower bound is valid for an arbitrary choice of the variational distri-
butions q(X ), q({mk}) and q({s(t)

k }). Starting with an initial guess
for the adaptation parameters, a local maximum of (4) can be found
using the EM algorithm.

E-Step: The variational distributions are set such that the lower
bound is tight8 at the current parameter estimate, i.e.

q({x(t)
k }) =

∑

X\{x(t)
k

}

p(X|Y, {T (old)
k }, {b(old)k }), (6)

q({mk}) = p({mk}|y
(t)

, {x(t)
k }, {T (old)

k }, {b(old)k }), and (7)

q({s(t)
k }) = p({s(t)

k }|y(t)
, {x(t)

k }, {mk}, {T
(old)
k }, {b(old)k }).

(8)

Note that the calculation of Equations (6) and (7) is equivalent to
the E-Step for exact parameter learning in FHMMs [18]. Specifi-
cally, (6) represents the marginal posterior, which can be obtained
using the forward-backward algorithm of FHMMs as proposed
in [18].
M-Step: The lower bound of the LL in (5) is maximized with respect
to the parameters. For each speaker k, the parameters are updated
according to {Tk, bk} = argmax{T ,b} Qk(T , b). The auxiliary
function Qk(Tk, bk) for speaker k is

Qk(Tk, bk) =
∑

t,{xk},{mk}
γt,{xk},{mk}

E{s(t)
k

}

{

lnN (s
(t)
k |WT̃kWµ

mk

k,xk
+Wb̃k,Σ

mk

k,xk
)
}

,

(9)

where we introduced the shorthand

γt,{xk},{mk} = p({x(t)
k }, {mk}, |Y, {T (old)

k }, {b(old)k })

= q({x(t)
k })q({mk})

to denote the posterior of states and components obtained in the
previous E-Step (Equations (6) and (7)). The auxiliary function
Qk(Tk, bk) is obtained by plugging Equations (6), (7) and (8)
into (5). The probability of the hidden single-speaker spectrum s

(t)
k

has been replaced by its conditional expected value where the expec-
tation E{s(t)

k
}{·} is with respect to the distribution in (8). During the

M-Step, the adaptation parameters can be optimized independently
for each speaker.

As Qk(·, ·) is jointly concave in Tk and bk, a global optimum
can be obtained by setting the derivative to zero [19]. This leads
to two cases: (i) ∂Qk(Tk,bk)

∂Tk
= 0; assuming that bk is fixed; (ii)

∂Qk(Tk,bk)
∂bk

= 0; assuming that Tk is fixed. The derivative of (i)
and (ii) leads to a closed form solution for T and b, respectively.
Due to page limitations, we refer the reader for a detailed derivation
to [20, 12]. Both (i) and (ii) are applied iteratively during the M-Step.

During the E-Step, the unknown single-speaker spectrum of ev-
ery speaker is inferred, based on the currently available speaker mod-
els. During the M-Step, the expected single-speaker spectrum is
used as a surrogate to the true single-speaker spectrum, and model
parameters Tk and bk are updated according to csMLLR. Unfortu-
nately, the forward-backward algorithm as well as the calculation
of sufficient statistics during the E-Step of the exact algorithm are
intractable. Therefore, we make use of the fast pruning scheme de-
veloped for the MIXMAX interaction model [20].

4. EXPERIMENTS

The tracking performance of the algorithm is measured using
ETotal [1], which is a slight extension of the error measure proposed

8Up to a term that does not depend on adaptation parameters.

6794



10

20

30

40

50

60

70

80

90

E
T

ot
al

(a)

no
 a

da
pt

at
ion

  

cs
M

LL
R (C

=1
)  

cs
M

LL
R (C

=2
)  

cs
M

LL
R (C

=3
)  

cs
M

LL
R (C

=4
)  

cs
M

LL
R (C

=5
)  

cs
M

LL
R (C

=6
)  

cs
M

LL
R (C

=7
)  

cs
M

LL
R (C

=8
)  

cs
M

LL
R (C

=9
)  

cs
M

LL
R (C

=1
0)

  

M
LL

R  

sy
nt

he
tic

 m
ix 

 10

20

30

40

50

60

70

80

90
(b)

no
 a

da
pt

at
ion

  

cs
M

LL
R (C

=1
)  

cs
M

LL
R (C

=2
)  

cs
M

LL
R (C

=3
)  

cs
M

LL
R (C

=4
)  

cs
M

LL
R (C

=5
)  

cs
M

LL
R (C

=6
)  

cs
M

LL
R (C

=7
)  

cs
M

LL
R (C

=8
)  

cs
M

LL
R (C

=9
)  

cs
M

LL
R (C

=1
0)

  

M
LL

R  

sy
nt

he
tic

 m
ix 

 10

20

30

40

50

60

70

80

90
(c)

no
 a

da
pt

at
ion

  

cs
M

LL
R (C

=1
)  

cs
M

LL
R (C

=2
)  

cs
M

LL
R (C

=3
)  

cs
M

LL
R (C

=4
)  

cs
M

LL
R (C

=5
)  

cs
M

LL
R (C

=6
)  

cs
M

LL
R (C

=7
)  

cs
M

LL
R (C

=8
)  

cs
M

LL
R (C

=9
)  

cs
M

LL
R (C

=1
0)

  

M
LL

R  

sy
nt

he
tic

 m
ix 

 

Fig. 2. Multi-pitch tracking performance in terms of ETotal after self-adaptation of SD models on real recordings. (a) male-female mixtures.
(b) female-female mixtures. (c) male-male mixtures. 9 test mixtures were used per speaker pair, and error bars indicate the corresponding
mean and standard deviation of ETotal for various methods. ’no adaptation’: SD models of both speakers were used without adaptation.
’csMLLR’: SD models of both speakers were adapted on the test mixture using csMLLR. ’MLLR’: SD models of both speakers were adapted
on the test mixture using MLLR. ’synthetic mix’: SD models of both speakers were used without adaptation and applied for multi-pitch
tracking on the synthetic mixture (i.e. no recording in room environment).

in [13] to additionally measure the influence of speaker assignment
errors EPerm, i.e. ETotal = E01 + E02 + E10 + E12 + E20 +
E21 + EGross + EFine + EPerm. Eij denotes the percentage of
time frames, where i pitch points are misclassified as j pitch points.
EPerm measures the percentage of frames, where the voicing deci-
sion is correct, but the pitch values are not assigned to the correct
speakers. EGross is the percentage of frames where the voicing de-
cision is correct and no permutation error has occurred, but at least
one detected pitch value deviates more than 20% from the reference
pitch value. EFine is defined as E

(1)
Fine + E

(2)
Fine, where E

(i)
Fine

denotes the frequency deviation in percent for speaker i, averaged
over frames where no voicing, no gross and no permutation errors
have occurred.

We use the proposed framework to perform self-adaptation on
mixtures recorded in a real office environment where the spectral
characteristics of each source signal have changed due to multi-
path propagation or a different microphone transfer function. For
this experiment, we used a total of 27 test mixtures, consisting
of 9 test mixtures from three speaker pairs (female-female, male-
female, male-male) from the GRID corpus [21], played through
Yamaha MSP5A loudspeakers. The recording room has the dimen-
sions 6.02× 5.32 × 3m. One of the walls of the room has a large
window, and the floor is covered with a carpet. The measured rever-
beration time (RT60) was RT60 ≈ 500 ms; no particular effort was
made to reduce the reverberation. For each recorded speech mix-
ture, two GRID utterances were played back simultaneously with
two loudspeakers positioned at different locations around a circular
microphone array (with 0.15m diameter). We process the record-
ings of one channel of this array. The distance between loudspeakers
and the microphone was about 2m.

For each test speaker, 450 sentences from the GRID corpus were
used to train SD GMMs. The reference pitch trajectories needed for
training and evaluation were obtained using the RAPT method [22].9

The observed features y(t) are based on the log-spectrogram of the
speech mixtures. The spectrogram is computed via the 1024 point
DFT, using a Hamming window of length 32ms and step size of

9An implementation of the RAPT algorithm is provided by the Entropic
speech processing system (ESPS) labeled as “get f0” method.

10ms.10 The sampling frequency is fs = 16kHz. Each observa-
tion vector y(t) ∈ R

64 is obtained by taking the log-magnitude of
spectral bins 1-64, which corresponds to a frequency range up to
1000Hz.

For each test mixture, we applied self-adaptation using either
csMLLR or MLLR and evaluated the resulting multi-pitch tracking
performance. A summary of the results is shown in Figure 2, where
the performance is additionally compared to the case where (i) no
adaptation is performed and (ii) multi-pitch tracking is performed
on the equivalent synthetic test mixture.11 SD models without adap-
tation work very well when applied to a synthetic mixture, but result
in heavily degraded performance when applied to the recorded mix-
ture. Self-adaptation is able to improve the performance. A low
value of C works better, as only few data for adaptation is avail-
able. Self-adaptation works best for mixtures of a male and female
speaker, using csMLLR with C = 3.

5. CONCLUSIONS

We developed a model adaptation framework for FHMMs based on
the EM algorithm and the MLLR technique to compensate any mis-
match between training and testing conditions. We are able to adapt
our models to a novel acoustic environment using only speech mix-
tures. Additionally, we propose a modification of the MLLR tech-
nique, where the adaptation of model parameters is constrained to
modifications of the spectral envelope. This is beneficial in cases of
few adaptation data. All developed methods are empirically com-
pared for multipitch tracking. In future, we aim to adapt SI models
in this self-adaptation scenario. We plan to extend our MLLR-based
adaptation framework to additionally adapt the covariances of the
speaker models. Furthermore, we plan to apply the proposed frame-
work on other applications such as speech recognition, source sepa-
ration and speaker identification.

10For the task of pitch estimation, the analysis window commonly includes
at least 2-3 periods of the corresponding candidate f0.

11For each recorded test mixture, a corresponding synthetic test mixture
was created by linear superposition of the time-aligned original GRID utter-
ances.
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