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ABSTRACT

Inspired by the NIST SRE-2012 evaluation conditions we
train the PLDA classifier in an i-vector speaker recognition
system with different speaker populations, either including
or excluding the target speakers in the evaluation. Including
the target speakers in the PLDA training is always beneficial
w.r.t. completely excluding them—which is the normal situ-
ation in pre-2012 SRE protocols—even in the Pknown = 0
evaluation condition. However, adding other speakers than
just the targets speakers can slightly increase performance.
We also investigated the effect of adding i-vectors extracted
from segments with added noise in the PLDA training. This
generally makes the system more robust to noise in the test
segments, and doesn’t hurt performance in the clean con-
dition. The paper further details the ‘simple to compound’
log-likelihood-ratio conversion necessary for SRE-2012 style
calibration.

Index Terms— Speaker recognition, i-vector, PLDA, cal-
ibration, noise robustness.

1. INTRODUCTION

Automatic speaker recognition is an area of speech technology that
is strongly driven by the series of Speaker Recognition Evaluations
(SREs) as organized by the National Institute of Standards and Tech-
nology (NIST) [1]. Important aspects of such an evaluation are the
task, the data and the evaluation metrics used to assess the perfor-
mance of the speaker recognition systems. Until 2010, the NIST
SREs main task was that of speaker detection, where an unknown
test segment is compared to a target speaker, for which some train-
ing material is available. Traditionally essential in the evaluation
was that no knowledge about other target speakers was allowed to
be used in trials involving a particular target speaker. This was to
ensure a certain application readiness of the system: a comparison
score should be given for a given (test segment, target speaker) trial
without having to wait for examples of possible non-target speak-
ers that the system may be exposed to at some unknown time in the
future.

In the 2012 edition of the NIST SRE, a radical change with re-
spect to this has been made. This time, knowledge of all training
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speakers is allowed to be used for any trial, whereby the cost func-
tion reserves a fixed weight for false alarms stemming from known
non-targets and those stemming from unknown non-targets. The lat-
ter are speakers used in the test as non-target speaker that are not part
of the set of training speakers. Because the unknown non-target tri-
als have the same function as ordinary non-target trials in pre-2012
NIST SREs, the major difference lies in the known non-target trials.
In a way, this makes the task more like an (open set) identification
task, even though the cost function remains specified in a detection
framework. There are in fact parallels with the way language recog-
nition is carried out in the NIST Language Recognition Evaluations.

The best performing automatic speaker recognition systems cur-
rently are based on subspace modeling using i-vectors [2], with prob-
abilistic linear discriminant analysis (PLDA) modeling [3, 4, 5]. The
i-vector approach still is based on the representation of the acous-
tic feature space using a universal background model (UBM, [6])
and uses subspace modeling techniques developed in the joint factor
analysis approach [7]. Originally support vector machines and LDA
were used as a back-end classifier [2], but more recently PLDA out-
performs other classifiers and relieves the need for score normaliza-
tion such as s-norm or T-norm, and generally shows relatively good
calibration properties [8]. The PLDA model takes care of most of the
channel and session compensation, and therefore the choice of train-
ing data used for PLDA training is important for the performance of
the system.

In pre-2012 SREs, the PLDA training material must be chosen
from data not in the evaluation, for reasons explained earlier. Be-
cause in SRE12 knowledge of all target speakers is allowed, we can
use these speakers for PLDA training as well. This paper studies the
effect of training PLDA using speakers from the evaluation, which
should lead to more discriminative modeling. The motivation for this
work was the NIST SRE-2012, in which the authors participated in
both the RUN submission and the I4U collaboration.

Apart from the speaker population, this paper studies the effect
of noise addition to PLDA training. Including noisy samples of clean
data in the training phase can be carried out in a way to have mul-
tiple models for a single speaker (parallel models) [9] or a single
overall model (multi condition training) [10]. A GMM-UBM sys-
tem has also shown quite satisfying identification accuracy on the
GRID corpus [11] (speech mixture) when a mixed-UBM and multi-
conditioned GMMs are utilized [12]. Multi-condition training for i-
vector based representation of utterances and Gaussian PLDA mod-
eling has shown to be an effective way to handle additive noise [10]
and reverberation [13].

The paper is organized in the following way. After specifying
the data (Section 2), experimental setup (Section 3) and system (Sec-
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tion 4) we present in Section 5 the calibration strategy for SRE12
before the results are presented in Section 6.

2. DATA PREPARATION

In the preparation for SRE12 we worked with two trial sets, coined
‘dev’ and ‘eval’ for development and evaluation. Because SRE12
deals with known non-targets, we chose our development set to con-
tain all target speakers in SRE12 known previously from SRE08 and
SRE10 training and evaluation data. In SRE12, there are 100 addi-
tional target speakers defined, for which one conversation side train-
ing is available. We used these ‘singleton’ speakers in two ways: we
used them in the development set as unknown non-target test seg-
ments, and in the evaluation set as target model (for which we would
not have target test segments, unfortunately). The available speech
data from SRE08 and SRE10 were distributed over train, dev-test
and eval-test data sets according to a number of criteria. Firstly, we
made sure that all segments with the same LDC session identifica-
tion would appear within the same data set. Secondly, we attempted
to populate the training segments for every target speaker with both
microphone and telephone segments. The training material was used
for both development test models and evaluation test models, where
the latter included all segments per speaker of the former and had
about twice as many in total. The evaluation test further had addi-
tional models for the 100 new singleton speakers. The dev and eval
test segments were augmented with many segments from SRE06, in
order to have abundant unknown non-targets in the test sets. The dev
and eval test segment sets were completely disjoint.1

It was mentioned in the SRE12 evaluation plan [14] that some
of the test segments contained noise, so therefore we added noisy
versions of all segments used in training or testing, which were ob-
tained by adding HVAC2-noise and speaker babble at 6 dB and 12 dB
signal-to-noise ratio (SNR). The noise added using FaNT,3 which
takes into account the spectral properties of speech and noise in or-
der to have a meaningful SNR. The babble noise was generated by
mixing the noise of 100 speakers from one of our speech databases.
The HVAC noise was obtained from public resources. The noise lev-
els and types were inspired by information from NIST about these
parameters, disclosed to the participants of SRE12.

3. EXPERIMENTAL SETUP

In the first experiment we want to study the effect of the speaker pop-
ulation for PLDA training, and specifically, whether target speakers
from the evaluation are preferred or not. In order to do this, three
PLDA training conditions were defined:

target All training i-vectors are from target speakers

non-target All training i-vectors are from other speaker than the
target speakers

combined The PLDA training i-vectors are from both sources

Of course, it will make a difference if there are any speakers and
channels in the test that are different from what is observed in PLDA
training, because PLDA is the main classifier in the i-vector system
that tries to separate speakers and reduces the influence of channels
and sessions. In SRE12, three different analysis conditions are de-
fined, where the weight of the unknown non-target test segments to

1We have made the development and evaluation sets available via http:
//lands.let.ru.nl/˜saeidi/.

2Heating, Ventilation and Air Conditioning
3http://dnt.kr.hsnr.de/download.html

the false alarm rates varies. This weight is indicated as Pknown, and
has the discrete values 0, 1

2
, and 1 for the three analysis conditions.

We will therefore study the effect of PLDA training using these three
evaluation conditions.

In a second study, we continue with the most optimal configura-
tion from the first experiment, and this time concentrate on the effect
of having noisy segments in the PLDA training. Again, we have sev-
eral PLDA training conditions. The first three are ‘clean’, ‘15 dB’
and ‘6 dB’ corresponding to i-vectors conditioned on corresponding
noise addition level in the speech segments, and a fourth condition is
‘combined’ which pools all three sets of i-vectors—this corresponds
to one of the conditions in the first experiment. Again, the effect of
training will depend on the expected test data, so here we will an-
alyze results separately for test segments without additional noise,
and with 15 dB and 6 dB added noise.

3.1. Evaluation metric

This research has been conducted in preparation to SRE12, with the
SRE12 in mind, and therefore we will report results in terms of the
official evaluation metric, Cprimary. This metric measures both dis-
crimination and calibration capabilities of the speaker recognition
systems, and more specifically, at Nω = 2 operating points,

Cprimary =
1

Nω

∑
ω

Cnorm(ω). (1)

Here ω represents the prior log odds used as operating points, for
SRE12 equal to {log 1

99
, log 1

999
}, and Cnorm(ω) is the normalized

Bayes’ error rate

Cnorm(ω) = (1 + e|ω|)Cdet(ω), (2)

where Cdet(ω) is the traditional detection cost for the prior log
odds ω. Because SRE12 contains known non-target trials, the con-
tribution of the false alarms to Cdet is split in two parts, weighted
by Pknown and 1− Pknown, respectively:

PFA(ω) = PknownP
kn
FA(ω) + (1− Pknown)P

unk
FA (ω) (3)

where

P kn
FA(ω) =

∑
t∈K u(st + ω)

||K|| (4)

P unk
FA (ω) =

∑
t∈U u(st + ω)

||U|| , (5)

where K,U are the sets of known an unknown non-targets trials,
respectively, and || . . . || is the cardinality operator that counts trials.
The unit step function u counts recognition scores st that are higher
than−ω, the decision threshold that leads to a Bayes’ decision. With
the traditional definition for the miss probability, using the set of
target trials T , Cdet can be completed

Pmiss(ω) =

∑
t∈T u(−st − ω)
||T || (6)

Cdet(ω) = S(ω)Pmiss(ω) + S(−ω)PFA(ω), (7)

where we have used the logistic function S(x) = 1/(1 + e−x) to
express the prior for targets and non-targets in terms of the prior log
odds ω.
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4. THE SPEAKER RECOGNITION SYSTEM

The speaker recognition system at RUN consists of a standard i-
vector configuration with PLDA modeling. We use 19 MFCC’s
plus log energy computed every 10 ms over a 30 ms window, and
augment these features with first and second order derivatives com-
puted over 9 consecutive frames, followed by short time Gaussian-
ization [15]. After speech activity detection, the system is gender-
dependent. For each gender, a 2048-component UBMs has been
trained, using segments from the data sets NIST SRE04–06, Switch-
board cellular phase 1 and 2, and Fisher English. Using the UBMs,
from each relevant utterance (background, train, or test segments)
0th, 1st and 2nd order Baum-Welch statistics are computed w.r.t. the
UBM. An i-vector extractor matrix T of rank 400 has been trained
using the statistics from the same utterances used for training the
UBM. Next, for each relevant utterance, an i-vector is extracted us-
ing the statistics and T. After applying LDA to map the i-vectors on
a space with 200 dimensions, i-vectors are centered, whitened and
length-normalized [16]. The speaker and session dependent i-vector
distribution is modeled using PLDA [4]. Finally a score for a trial
is based on the log likelihood ratio expression of the likelihoods of
the pair of i-vectors originating from the same speaker versus differ-
ent speakers. Scores are then converted to calibrated log-likelihood-
ratios using a linear calibration transformation. Finally, the cali-
brated log-likelihood-ratios are converted to ‘compound LLRs’ suit-
able for submission to NIST SRE-2012.

5. CALIBRATION

Calibration is based on the log-likelihood-ratio (LLR) representa-
tion that we are familiar with in SRE10 and earlier, i.e., under the
assumption that the speakers in a non-target test segment have not
been observed before in training. This is equivalent to the testing
condition Pknown = 0 in SRE12. Our calibration transformation of
these so-called ‘simple4 LLRs’ s(x, y) for a trial involving training
speech segments x and test segment y is

λ(x, y) = w0 + w1s(x, y) (8)

The offset w0 and scaling w1 are found by minimizing the multi-
class cross entropy Hmc [17] over the development set. Hmc is de-
fined in terms of the posterior probability of the true class, by

Hmc =
N∑
i=0

πi
Ni

Ni∑
j=1

− logP (i | x, yj). (9)

Here i indexes the N target speakers, using i = 0 for an unknown
speaker, and j runs over all Ni test segments for which i is the the
speaker. For the priors πi we were inspired by the NIST SRE core
conditions, setting π0 = 1− Pknown and πi>0 = Pknown/2N . The
posterior in (9) is computed using

P (i | x, yj) =
πie

λi(x,yj)

π0 +
∑N
k=1 πke

λk(x,yj)
. (10)

Note that we use the notation λi(x, yj) to indicate the simple likeli-
hood ratio for test segment yj with speaker i in the target hypothesis
using all available training material x. We used a standard general
numerical optimizer nlm from the R software package for finding
the calibration parameters.

4Term coined by Niko Brümmer

5.1. Compound LLRs

The denominator in the ‘simple LLRs’ λi is the likelihood of the
test segment given the fact it is not any of the known target speak-
ers. This is different from the log likelihood ratio required for NIST
SRE12, for which the denominators condition indicates ‘not the tar-
get speaker,’ i.e., including any known non-target speaker. For the
conversion from our simple LLRs in (8) it is easiest to start with the
posterior defined in (10), and compute the posterior odds using the
fact that P (¬i | x, yj) = 1− P (i | x, yj)

P (i | x, yj)
P (¬i | x, yj)

=
πie

λi(x,yj)

π0 +
∑N
k=1 πke

λk(x,yj) − πieλi(x,yj)
(11)

=
πie

λi(x,yj)

π0 +
∑
k 6=i πke

λk(x,yj)
. (12)

Here the last summation runs over all known speakers excluding the
target speaker. The prior odds, in SRE12 sense, are just

P (i)

P (¬i) =
πi

π0 +
∑
k 6=i πk

. (13)

The required log-likelihood-ratio now simply is the posterior odds
(12) divided by the prior odds (13):

λcomp
i (x, yj) = log

(
π0 +

∑
k 6=i πk

)
eλi(x,yj)

π0 +
∑
k 6=i πke

λk(x,yj)
(14)

This expression, while nicely not explicitly dependent on the
prior πi—which is one of the reasons to use a likelihood ratio—
shows a dependency on all other priors and all other ‘simple LLRs’
λk(x, yj). This is the reason why the form (14) is also known as
the ‘compound5 LLR.’ The expression can be simplified in appear-
ance by including the unknown non-target speakers i = 0 in the
summations, and using λ0(x, yj) = 0.

6. EXPERIMENTAL RESULTS

In the first experiment, we trained three different PLDA models, for
both male and female, and computed ‘simple LLR’s for both the dev
and eval data. We then trained a global calibration transformation
using each of the six development set scores, and applied these to
the eval set scores using (8). Next, the simple→compound transfor-
mation (14) was carried out using the values Pknown = {0, 1

2
, 1}, as

according to the SRE12 evaluation protocol, leading to 18 calibrated
‘compound LLR’ sets. Each of these sets was further analyzed sepa-
rately for the noise conditions ‘clean,’ ‘15 dB’ and ‘6 dB,’ and a value
of Cprimary, using corresponding values of Pknown was computed
for each of these conditions, leading to 54 values of Cprimary for the
factors gender (2), PLDA training (3), Pknown (3), and noise (3). In
Table 1 the values for Cprimary averaged over noise condition are
shown for the evaluation set, and in Figure 1 a ‘box plot’ is shown
to indicate the interaction between the factors ‘PLDA training’ and
‘Pknown’.

From Figure 1 we can observe that knowing the target speakers
in PLDA always helps, even forPknown = 0. In that case, apparently
the target trials are helped by having target speaker data explicitly
modeled by the PLDA. This is a condition that was not sensible to
investigate with pre-2012 SRE evaluation protocols. Inspecting Ta-
ble 1, there appears to be a slight preference for adding other speaker
data in the PLDA training—if anything, it doesn’t seem to hurt.

5Again, a term coined by Niko Brümmer
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Fig. 1. Box plot showing the interaction between PLDA training
condition (non, tar, comb) and Pknown (0, 0.5, 1). Each box repre-
sents 6 values of Cprimary (gender, noise).

Table 1. The values of Cprimary of the evaluation set, averaged over
the three noise conditions.

PLDA female male
Pknown 0 0.5 1 0 0.5 1
non 0.273 0.207 0.1323 0.259 0.1665 0.0904
tar 0.181 0.128 0.0717 0.145 0.1027 0.0491
comb 0.171 0.123 0.0725 0.140 0.0982 0.0457

In the second experiment, we chose the ‘combined’ training
condition for PLDA in order to further inspect the effect of having
included noisy versions of the segments in the PLDA training. The
experimental setup was very similar to the first experiment, but this
time we conditioned the PLDA training on noise in the segments
from which the i-vectors were extracted, choosing the i-vectors
from the combined target speakers and external non-target speakers.
Again, we applied gender and PLDA-training dependent calibra-
tion, applied simple→compound LLR transform for three values of
Pknown, and analyzed Cprimary in corresponding values of Pknown

for three different noise level subsets. For the eval set this gave again
54 values of Cprimary, and we have shown a cross section of these
for the interacting factors PLDA training and test set noise level
in Figure 2. In this figure, we included the ‘combined’ data from
experiment 1 for comparison.

From Figure 2 we see that the noise condition in PLDA training
should not deviate too much from what is expected in the test, but
again, it doesn’t seem to hurt to simply add all noise conditions in
the PLDA training, which is computationally not a limiting factor.
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Fig. 2. Effect of the factors PLDA training (combined, clean, 15 dB,
6 dB) and test noise level (clean, n15, n6) for the eval test. Each box
represents 6 values

7. DISCUSSION AND CONCLUSION

The biggest change in paradigm in NIST SRE-2012 probably is the
concept of the known non-target trial. The counterpart, the unknown
non-target trial, is what in pre-2012 SREs was known as a ordinary
non-target trial, i.e., the evaluation protocol forbade any knowledge
of other target speakers for any trial. The knowledge of non-target
speakers can be utilized in, e.g., discriminative modeling. In the
first experiment we saw that knowledge of the non-target speakers in
PLDA modeling was always beneficial w.r.t. ignoring the informa-
tion, even when only evaluating with unknown non-targets speakers
(i.e., Pknown = 0). Even though there is no overlap in non-targets
in the evaluation and those in the PLDA model fore the Pknown = 0
case, the fact that the target trials have speakers observed by the
PLDA model helps for a better performance. Further, the inclusion
of other speakers than targets in the PLDA does not seem to hurt
performance for any Pknown condition. This is in line with the sec-
ond experiment, where multi-condition noise level training (the same
segments occurring multiple times in the PLDA training set with dif-
ferent amounts of added noise) seems always at least as accurate as
training with noise levels specifically tailored to the test condition.
Since it appears we can simply add more ‘versions’ of i-vectors ex-
tracted from the same speech segment in different conditions to make
the model more robust, we suggest that also artificial perturbation
of the i-vectors can have the same effect. Indeed, in experiments
conducted on similar data where the effect of reduced duration was
studied, such synthesized i-vectors in PLDA traing has led to an im-
proved performance with variable duration test segments, which we
have reported in another submission to this conference [18].
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