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ABSTRACT

This article describes our submission to the speaker identi-
fication (SID) evaluation for the first phase of the DARPA
Robust Automatic Transcription of Speech (RATS) program.
The evaluation focuses on speech data heavily degraded by
channel effects. We show here how we designed a robust sys-
tem using multiple streams of noise-robust features that were
combined at a later stage in an i-vector framework. For all
channels of interest, our combination strategy presents up to
a 41% relative improvement in miss rate at a 4% false alarm
rate with respect to the best-performing single-stream system.

Index Terms— i-vector, speaker verification, degraded
speech

1. INTRODUCTION

The DARPA RATS program aims at developing robust pro-
cessing methods for speech acquired from highly degraded
transmission channels. The four tracks pursued in RATS are
speech activity detection, keyword spotting, language identi-
fication, and speaker identification — the last of which is the
focus of this paper. Audio recordings are severely degraded
when telephone conversations are re-transmitted over eight
different military transmitter/receiver combinations [1].

The SCENIC team is composed of speech laboratory
teams from five institutions: SRI International, the Interna-
tional Computer Science Institute, the University of Texas
Dallas, Carnegie Mellon University, and the University of
California at Los Angeles. Each team focuses on robust fea-
ture extraction and speech activity detection in the context of
degraded RATS data. This widespread focus provided con-
siderable strength to the SCENIC SID submission through the
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complementary nature of features and speech activity detec-
tion (SAD) algorithms from each of the team members.

Section 2 of this article describes the five features con-
tributing to the SCENIC team submission. Section 3 outlines
two SAD approaches used in the system. The process of com-
bining multiple feature and input streams into a single score
is given in Section 4, along with the specifics of score calibra-
tion. Section 5 provides the experimental protocol, followed
by the presentation of results and analysis of the compounded
system in Section 6.

2. ROBUST FEATURE EXTRACTION

This section describes the five features used in the SCENIC
submission. These features, selected from a pool of ten
through a process of cross-validation of the development set
(see Section 5), are as follows:

e Perceptual linear prediction (PLP) features are the stan-
dard features used in speech recognition.

e Medium duration modulation cepstrum (MDMC) fea-
tures extract modulation cepstrum-based information
by estimating the amplitude of the modulation. More
details can be found in [2].

e Power-normalized cepstral coefficient (PNCC) features
use a power law to design the filter bank as well as
a power-based normalization instead of a logarithm.
More details can be found in [3].

e Mean Hilbert envelope coefficient (MHEC) features [4]
utilize a gammatone filter bank instead of the Mel fil-
ter bank, and the filter bank energy is computed from
the temporal envelope of the squared magnitude of the
analytical signal obtained using the Hilbert transform.
More details can be found in [4].

e Sub-band autocorrelation classification (SACC) [5]
provides a pitch estimate from an estimator that is
trained using a multilayer perceptron. The resulting
pitch signal and an energy signal obtained using get f0
(the pitch tracker software widely used in speech pro-
cessing) are then modeled over overlapping windows
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of 20 ms shifted by 5 ms as described in [6] except that
the approximation is done using Legendre polynomials
instead of the discrete cosine transform. These features
are referred to as PROSACC in this article. More de-
tails on SACC pitch estimation can be found in [5].

3. SPEECH ACTIVITY DETECTION

Two SAD approaches were used in the SCENIC submission:
hidden Markov model (HMM) and Gaussian mixture model
(GMM) approaches. Instead of combining the SAD outputs
in an effort to obtain a more reliable set of speech labels,
both SAD approaches were applied independently to each of
the five features, resulting in ten different systems for use in
the subsequent i-vector and score-level fusion process. These
SAD approaches were applied to audio recordings longer than
10s. For audio recordings shorter than 10s, an energy-based
SAD was used in which the frames in the lowest 10th per-
centile of the energy distribution were dropped.

3.1. HMM SAD

The SCENIC team developed a robust speech detector as part
of the SAD track of the RATS program. Referred to as HMM
SAD in this article, this SAD consists of a feature combi-
nation frontend from four acoustic features: standard PLP
acoustic feature; a GABOR spectrogram long-range represen-
tation post-processed by a multilayer perceptron; a voicing
estimator which is a PCA-based combination of four basic
voicing features; and a spectral flux estimator and a multi-
band voicing estimator. The backend of this SAD includes an
HMM decoder from speech and background HMM models.

The HMM SAD was developed in the context of speech
recognition and, subsequently, keyword spotting for the
RATS program. The system is based on the modeling of
multiple speech models with a decoding backend similar to
what one would use in speech recognition. Consequently, low
speech energy or pause frames needed to be excluded from
the feature stream in order to benefit SID performance.

3.2. GMM SAD

An alternative SAD system was developed that uses a much
simpler strategy in that the speech detection is based on the
log-likelihood ratio output of two GMMs, one for speech and
one for non-speech. These two components were trained us-
ing the SID development set, and annotations were provided
as part of the RATS data distribution. Speech was detected
in an audio stream by first calculating the likelihood ratio be-
tween the speech and non-speech models. A median filter of
length 31 frames was then applied to smooth the detection
output.

(GMM SAD)

l-vector
Extractor
(HMM SAD)

Fig. 1. SCENIC SID system involving five features, two
speech activity detectors, i-vector fusion of five feature
streams and score fusion of seven feature streams, along with
i-vector fused scores.

4. SPEAKER RECOGNITION SYSTEM

4.1. Single-stream System

Each stream of features for both SAD outputs was processed
in the same fashion. We used a standard i-vector / proba-
bilistic linear discriminant analysis (PLDA) framework as our
speaker recognition system [7, 8]. I-vectors were extracted
for each feature+SAD combination, resulting in 10 i-vector
streams for possible selection in the fusion process. The
SCENIC team employed two styles of fusion: i-vector fu-
sion and score-level fusion. Figure 1 illustrates the data flow
through the system and how the different SAD and fusion al-
gorithms are incorporated.

4.2. I-vector Fusion

I-vector fusion consists of concatenating each i-vector from
each stream into a single vector before employing the PLDA
backend. The i-vector dimensions are first reduced using
LDA, and only after concatenation does a second dimension-
ality reduction shrink the total dimension to 200. Five out of
ten systems were selected for the i-vector fusion process. This
selection was based on maximizing SID performance through
cross-validation of the development set. The systems selected
for i-vector fusion were MHECs, PNCCg, PLPg, PNCCg
and PROSACCg, where the subscript letters G and S indicate
GMM SAD or HMM SAD, respectively. It is interesting to
note that PNCC from both SAD configurations was selected.

4.3. Score Fusion and Calibration

Single-system i-vector streams were fused at the score level
along with the scores from the i-vector fused system. The
single-system streams to be included in the score-level fusion
were selected independently of the previous i-vector fusion
and included MDMCg, PLPg, PNCCqg, MHECy, PLPy,
PNCCpy and PROSACCy.
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Fusion of systems at the score level was performed using
logistic regression and a binary cross entropy objective [9].
This is the standard fusion approach in speaker recogni-
tion. The selection experiments were carried out using cross-
validation sets where fusion parameters were trained on one
out and applied to the other. The two sets for cross-validation
contained a unique subset of speakers for both enrollment and
testing.

5. EXPERIMENTAL PROTOCOL AND SYSTEM
CONFIGURATION

The RATS SID task was defined as a speaker verification task
where each speaker model was trained using six different ses-
sions. A trial was designed using one speaker model and
one test session. The transmission channels of the six dif-
ferent sessions were picked randomly to have speaker mod-
els trained on multiple transmission types. Some of the trials
were thus performed on channels seen in enrollment, while
others were not.

The primary metric was defined as the percentage of
misses at a 4% false alarm rate. Multiple duration config-
urations for the enrollment and tests were of interest in this
evaluation. A total of eight conditions were formed with dura-
tions of 3, 10, 30 and 120 seconds for the input files (Table 1).
Note that an enrollment duration of 10 seconds denotes that
speaker models were trained using six sessions, each with 10
seconds of nominal speech activity.

For our development, data from LDC releases
LDC2012E49, LDC2012E63 and LDC2012E69 under
the RATS program were divided by the SCENIC team
into training and development sets. Table 2 presents the
distribution of languages across the datasets. A major factor
that influenced this distribution was that speakers in the
dev set were required to have at least seven original (not
re-transmitted) recordings. For PLDA training, segments
in the train set had 10-, 30- and 120-s cuts taken from
each segment in the train set to better represent the i-vector
distribution of evaluation data.

For the i-vector framework used by all feature streams,
we used universal background models (UBMs) with 2048 di-
agonal covariance Gaussian components trained in a gender-
independent fashion. The PROSACC systems used 1024-
component UBMs. The i-vector dimensions of 400 were
further reduced to 200 dimensions by LDA (in the case of
PROSACC, 200D i-vectors were reduced to 100D), followed
by length normalization and PLDA.

6. RESULTS

Figure 2 presents the performance of individual feature
streams for matched enrol and test durations. Both GMM
and HMM SAD results are provided. Verification perfor-
mance is reported in terms of miss rate at 4% false alarm

Table 1. The eight trial conditions evaluated.

Test (seconds)

Enrol (seconds) 3 10 30 120
3 X X X

10 X X X

30 X

120 X

Table 2. Language distribution of recordings in Train and
Dev sets.

Language Train Set Dev Set
Levantine 6056 1532
Farsi 1086 359
Dari 18 270
Pushto 3291 2630
Urdu 0 494

(m4FA) and equal error rate (EER). Compared to other fea-
tures, MDMC and PNCC were consistently the best perform-
ers across all durations, illustrating their robustness to de-
graded conditions. PNCC in particular was found to be a ma-
jor contributor in the SCENIC system, with both SAD alter-
natives being utilized in both fusion stages. Interestingly, the
prosodic system was able to find speaker-discriminative in-
formation even in limited audio. Despite the generally lower
performance from PROSACC, this system was highly com-
plementary in the fusion process, offering a 10% relative im-
provement in m4FA when added to the score level fusion of
the alternate features in the 30-30 condition. In contrast to
other features, PROSACC used in conjunction with HMM
SAD outperformed the alternative GMM SAD. It is believed
that HMM SAD provided a more continuous transition be-
tween high-energy speech frames. Since the PROSACC sys-
tem only defines uniform regions of extraction (20ms long)
over speech segments, more regions are defined for the HMM
SAD than for the GMM SAD probably explaining the ob-
served results.

Table 3. Development set performance (m4FA / EER) of
SCENIC SID system across different enrol-test conditions.
m4FA: miss rate at 4% false alarm, EER: equal error rate.

Eval. IV Fusion Score Score+IV
Cond. Fusion Fusion
3-3 62.6/21.7% 58.4/203% 57.3/20.0%
3-10 392/14.6% 329/133% 32.6/13.0%
3-30 259/11.0% 21.3/9.8% 20.4/9.5%
10-3 46.8/17.6% 44.1/172% 43.5/17.0%
10-10 21.5/10.0% 19.4/9.7% 18.7/9.4%
10-30 9.7/6.3% 8.8/6.1% 8.2/5.8%
30-30 6.5/5.1% 6.3/5.1% 5.8/4.9%
120-120 2.0/2.8% 2.5/3.1% 1.9/2.8%
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Fig. 2. Comparison of the individual features with GMM or HMM SAD across matched enrol and test durations overlaid with
results from Score+IV fusion. m4FA: miss rate (%) at 4% false alarm, EER: equal error rate.

Table 3 provides the results of i-vector fusion, score fu-
sion and the score fusion involving the i-vector fused results
for the development dataset. While i-vector fusion provides
significant gains over any single system, its combination with
our systems at the score level brings even further improve-
ments. This was particularly the case for shorter durations.
Results from the final fused system (Score+IV Fusion) in Ta-
ble 3 provided a considerable relative improvement of up to
41% in m4FA over any individual feature in Figure 2, thus
demonstrating the strength of the fusion approach employed
in the SCENIC SID submission.

Figure 3 illustrates the effect of adding the “next best” fea-
ture to the score-level fusion process starting with the best sin-
gle feature: MDMC with GMM SAD. PROSACC was found
to be the second best feature, demonstrating the considerable
benefit high-level prosodic information provided in the con-
text of degraded speech data. Three-way fusion additionally
included PLP and obtained results comparable the best fu-
sion. This selection represents three considerably different
feature extraction techniques of which PROSACC and PLP
were shown to provide the lowest individual performance in
Figure 2.

7. CONCLUSIONS

The RATS program presents a highly challenging task for
speaker recognition where speech has been heavily degraded
by transmission effects. The SCENIC approach is to bring
robustness to these degradations to all components of the
pipeline. We showed in this paper how this approach can be
successful as the final systems use multiple speech detectors,
multiple feature streams, and a robust modeling and fusion
approach that shows impressive improvements and comple-
mentarity in this task. Despite the numerous score streams
available for fusion, competitive performance was achievable
through score-level fusion of three diverse features.

10
¥ MDMC-GMM

9.5
9 ¥ +PROSACC-HMM
8 7.7 ¥ +PLP-HMM
+MHEC-GMM
7 69 6.7 6.6 64
- +PNCC-GMM
5.6
5.3 5.2 5.2
EER

m@4FA

o

Error/Miss rate (%)
N w S 1%

-
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Fig. 3. Illustrating the effect of adding the “next best” feature
to score-level fusion on the 30-30 evaluation condition.

8. RELATION TO PRIOR WORK

This work is related to already published work achieved dur-
ing the RATS program. To our knowledge, this is the first pa-
per that comprehensively describes and analyzes the speaker
recognition task in this program. Other work in the same
program includes speech activity detection, keyword spotting,
and the noise-robust feature extraction used in this paper. For
noisy speaker verification, we cite [10], which inspired the
authors of this work.
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