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ABSTRACT
In this work, we address the problem of having i-vectors that
have been produced in different channel conditions. Tradi-
tionally, this problem has been handled training the LDA co-
variance matrices pooling the data of all the conditions or av-
eraging the covariance matrices of each condition in different
ways. We present a PLDA variant that we call, multi-channel
SPLDA, where the speaker space distribution is common to
all i-vectors and the channel space distribution depends on the
type of channel where the segment has been recorded. We test
our approach on the telephone part of the NIST SRE10 ex-
tended condition where we added some additive noises to the
test segments. We compare results of a SPLDA model trained
only with clean data, SPLDA trained with pooled noisy and
clean data and our MCSPLDA model.

Index Terms— speaker recognition, PLDA, i-vector,
multi-channel, generative

1. INTRODUCTION

The i-vector approach has become state of the art in the
speaker verification field. It provides a method to map a
speech utterance to a low dimensional fixed length vector
that retains the speaker identity information (i-vector) [1].
Great performance has been achieved modeling the i-vectors
distributions by a generative model known as PLDA [2–4].

This paper addresses the problem of how to model the
i-vector distributions when we have segments recorded over
different types of channels or noisy environments. The stan-
dard PLDA model describes the inter-session variability be-
tween the i-vectors of a given speaker by a unique within class
covariance matrix. Intuition tells us that session variability is
very dependent on the channel conditions. Therefore, we pro-
pose a PLDA variant with different within class covariance
matrices for each channel.

The problem of multi-channel speaker recognition has
been addressed before. The works in [5–10], present simi-
lar approaches. Some kind of LDA projection is applied to
telephone and microphone i-vectors to project them into a

common space. Then, i-vectors are classified using cosine
similarity or PLDA. The main difference is the method to
estimate the LDA projection matrix. In [5], LDA is trained
pooling all the telephone and microphone data or averaging
the telephone and microphone between and within class co-
variance matrices. In [6], authors project the i-vectors using
a PLDA where the covariance of the residual term is trained
only on telephone data and the eigenchannel matrix is trained
to handle the variability included in the microphone data that
is not already included in the telephone data. In [7], i-vectors
are projected using heavy tail PLDA trained on telephone
and microphone. In [8–10], several ways of estimating and
averaging the between and within class covariance matrices
are studied.

A different approach is adopted in [11] where standard
PLDA is trained using pooled clean and noisy data. In [12],
authors train three conditioned PLDA models (telephone, mi-
crophone and telephone+microphone). Then, in the classi-
fication phase they are treated as components of a mixture
of PLDA and Bayesian fusion of scores is implemented. In
in [13], several PLDA variants are explored (condition de-
pendent, pooled PLDA, tied PLDA) and the scores fused.

In this work, we present a variant of Prince’s tied PLDA [2]
where each i-vector is modeled by the same between class
covariance but a different within class covariance matrix de-
pending on the type of channel. This model can also be seen
as a mixture of PLDA models where the speaker component
is tied to be the same across the components. This framework
allows pooling all the data available to estimate the PLDA
parameters in such a way that the speaker space is estimated
with all the data and the channel spaces are estimated only
with the data of their corresponding channel.

The rest of the paper is organized as follows: Section 2
describes the standard PLDA approach. Section 3 describes
our multi-channel PLDA framework. Section 5 describes our
experimental setup and results on the SRE10 extended con-
dition where we added some additive noises, we compare the
multi-channel PLDA with a standard PLDA trained pooling
all the data. Finally, in section 6, we discuss the results.
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2. SPLDA

The SPLDA model is a simplified version of the PLDA in-
troduced in [2]. This is a generative model that assumes that
i-vector φ of speaker i can be written as:

φ = µ+Vyi + ǫ (1)

where µ is a speaker independent term, V is a low rank ma-
trix of eigenvoices, yi is the speaker factors vector, and ǫ is a
channel offset.

We assume Gaussian priors for the variables:

P (yi) =N (yi|0, I) (2)

P (ǫ|M) =N
(

ǫ|0,W−1
)

(3)

where N denotes a Gaussian distribution; and W is the
within class precision matrix. The parameters µ, V and W

are trained from a development database by ML and MD
iterations. We call M to the set of all the model parameters.

It is well known that, for this model, the posterior of the
speaker variables yi is a Gaussian distribution given by

P (yi|Φi,M) = N
(

yi|L
−1γ,L−1

)

(4)

where

L =I+NiV
TWV (5)

γ =VTWFi (6)

and Ni are the zeroth order statistics and Fi are the first order
statistics centered in µ, for a speaker i.

3. MULTI-CHANNEL SPLDA

3.1. Model description

The SPLDA model can be modified to take into account the
fact that each i-vector can be generated by a different channel.
Now, we assume that an i-vector φ of speaker i, generated in
a channel k can be written as:

φ|zk=1 = µk +Vyi + ǫk (7)

where µk is a channel dependent mean, V is the eigenvoices
matrix, yi is the speaker factor vector, and ǫk is a channel off-
set with channel dependent precision matrix Wk. We define
µ = {µk}

K

k=1
and W = {Wk}

K

k=1
.

Furthermore, z is a variable that indicates the type of
channel that generates ǫ. It is a 1-of-K binary vector with
elements zk for k = 1, . . . ,K where zk is equal to 1 if φ has
been generated by channel k and 0 otherwise. For simplicity,
we assume that we have some kind of channel detector that
provides the type of channel or, at least, the probability of z,
P (z). We could use the own MCPLDA model to compute
P (z) but we find more convenient to assume that it is given.

Figure 1 shows the Bayesian network that depicts this
model. Note that this is equivalent to a mixture of PLDA
models where V and y are tied across the components of the
mixture. Using this model, we intend to keep a channel in-
dependent speaker space (V), given that speaker are human
beings that should not change depending on the recording en-
vironment. Besides, this model forces that the speaker vari-
able yi is unique regardless of the channel.

µ W V

φij

zij

yi

θij

Ni M

Fig. 1. BN for multichannel SPLDA model.

3.2. Posterior of the hidden variables

The main thing needed to implement our PLDA model is to
compute the posterior distribution of the speaker variables yi.
To do that, we find convenient to define the sufficient statistics
for speaker i and channel k as

Nik =

Ni
∑

j=1

P (zijk = 1) (8)

Fik =

Ni
∑

j=1

P (zijk = 1)φij (9)

where Ni is the number of i-vectors of speaker i and P (zijk = 1)
is the probability for φij to be generated by channel k. Be-
sides, the channel centered statistics are defined as:

Fik =Fik −Nikµk . (10)

It can be shown that, the posterior of the hidden variables
is a Gaussian distribution given by

P (yi|Φi, zi,M) = N
(

yi|L
−1γ,L−1

)

(11)
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where

L =I+

K
∑

k=1

NikV
TWkV (12)

γ =

K
∑

k=1

VTWkFik (13)

Note that equation 11 does not average the channel covari-
ances to estimate the expectation of yi. Instead, the channel
dependent first order statistics Fik are multiplied by the pre-
cision matrix of their corresponding channel Wk and, then,
summed. That is different to other approaches like [10] where
they use an averaged within class covariance. In theory, this
model should do a robust estimation of the speaker identity
variable when we have several i-vectors produced by differ-
ent channels.

To estimate the parameters of the model we use this pos-
terior to compute the expectations needed when maximizing
the EM auxiliary function. We do ML and MD iterations.

4. I-VECTOR LENGTH NORMALIZATION

Length normalization intends to apply a transform to the non-
Gaussian i-vectors in order to make them more Gaussian. In
this way, we can go on using the simple and computationally
efficient Gaussian models with good performance. For high
dimensional data, it can be achieved by just normalizing the
i-vectors by their magnitude.

φ̂ =
φ

‖φ‖
(14)

The results presented in [14] show that this technique boosts
the performance of the PLDA.

The i-vectors need to be centered and whitened before the
length normalization. Thus, the length normalized i-vectors
are evenly distributed around a unitary hypersphere and we
can say that they have an almost Gaussian distribution. Oth-
erwise, if the i-vectors were very far from the origin, the nor-
malization would project all of them into a small region of the
hypersphere making them less discriminative.

There are several ways of doing centering and whitening.
As the speaker variable yi of the PLDA has a standard Gaus-
sian prior, we do centering and whitening computing the ex-
pectation of yi given the i-vector φ and the PLDA model. If
we use, our multi-channel PLDA, we get channel dependent
centering and whitening:

ŷ =

(

I+

K
∑

k=1

P (zk = 1)VTWkV

)−1

K
∑

k=1

P (zk = 1)VTWk (φ− µk) (15)

Note, that we use soft values for the channel posteriors
P (zk = 1).

Thus, we train a MCSPLDA model on the no-normalized
i-vectors and use it to do vector-wise dimensionality re-
duction. Then, we train another MCSPLDA on the length-
normalized i-vectors and use it for classification.

5. EXPERIMENTS

5.1. Development and evaluation dataset

The dataset used in these experiments is part of the devel-
opment dataset that we created for NIST SRE12. We evalu-
ate our approach on the SRE10 extended dataset telephone-
telephone (det5) with some additive noises added to the test
segments, the enrollment segments are kept clean. To training
the PLDA models we used data from NIST SRE04 to SRE08
and augmented with noise-corrupted versions. The UBM and
i-vector extractor are trained with clean data only.

We considered three SNR levels: clean, 15dB and 6dB.
We have used two types of noises: HVAC1 and babble. Bab-
ble noises were created summing 1000 conversations from
previous evaluations following NIST SRE12 guidelines. Dif-
ferent noise samples were added to the development and eval-
uation datasets. When adding the noise to the files, the power
of the noise and speech signals was estimated using a psopho-
metric filter and a VAD. The noise added to telephone seg-
ments is filtered by a simulated telephone channel.

5.2. Speaker recognition system configuration

As features, we used 20 short-time Gaussianized MFCC with
deltas and double deltas. We trained diagonal covariance,
gender dependent UBM with 2048 components with data
from NIST SRE04 to SRE06 without noise added. We used
an i-vector extractor of 600 dimensions trained on NIST
SRE04 to SRE06 without noisy versions also.

We reduce the i-vector dimensionality to 400 using
SPLDA or MCSPLDA. That has the side effect of centering
and whitening the i-vectors. Then, we do length normaliza-
tion of the i-vectors. Finally, we evaluate the likelihood ratio
of the trials using SPLDA or MCSPLDA.

We compare three PLDA models: SPLDA trained on
clean data only, SPLDA trained on pooled noisy and clean
data and MCSPLDA considering three channel conditions
(clean, 15dB and 6dB). The PLDA models used for dimen-
sionality reduction and classification are matched.

We also show results for the fusion of SPLDA trained with
the pool of all noisy data and the MCSPLDA. The fusion is
performed in a k-fold fashion. The score matrices are divided
into 50 blocks and each block is fused using a fusion function
trained with the blocks that does not share any enrollment or
test segment with it.

1We downloaded the noises from Freesound.org
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5.3. Condition detection

To estimate the values of P (zk) needed by the MCSPLDA
model, we use some quality measures Q: Signal-to-noise-
ratio, modulation index, spectral entropy and log-likelihood.
Detailed explanation of how these measures are computed can
be found in [15]

For each noise level we train a mixture of 8 Gaussians.
Then P (zk) is computed as:

P (zk = 1|Q) =
wkP (Q|zk = 1)

∑K

k=1
wkP (Q|zk = 1)

(16)

where we choose wclean = w15dB = w6dB = 1/3. We train
these models using NIST SRE04 to SRE08 with noise added.
The accuracy of this classifier for this dataset is around 99%.

5.4. Results

Table 1 shows results for the female part of NIST SRE10 ex-
tended det5 condition. We show EER, minDCF 2010 (PT =
0.001) and actDCF. Except for the fusion, that has the side ef-
fect of calibrating the scores, we do not apply any calibration
to the scores. The actual costs are obtained with the scores
straight from the PLDA.

For the clean test, the best configuration is the SPLDA
trained with clean data. The systems trained with noise suffer
some degradation. The SPLDA with pooled training is bet-
ter in EER and the MCSPLDA is better in minDCF, but with
small difference. It is interesting noting that the actDCF of
the MCSPLDA is much better. It seems that the MCSPLDA
produces likelihood ratios that are naturally better calibrated.

For the noisy tests, we obtained a great improvement of
the systems trained with noise data over the system trained
only with clean data. However, the difference between the
SPLDA and the more complicated MCSPLDA is small. The
SPLDA performs better in the EER part of the DET curve and
the MCSPLDA performs better in DCF2010 part. Again, the
MCSPLDA produces better calibrated likelihood ratios than
the SPLDA. We can get a small gain from the fusion but not
very significant.

We expected a better performance of the MCSPLDA
model compared to the SPLDA trained with pooled noises. It
is reasonable that using a dedicated within class covariance
for each channel should be better than having only one try-
ing to compensate all kinds of variability. We hypothesize
that the difference between channel spaces is not so big so
a unique channel matrix trained with more data can be more
robust and perform well in multi-condition scenarios.

6. DISCUSSION

In this work, we addressed the problem of handling i-vectors
generated in multiple channel conditions. For that, we have
presented a PLDA variant, that we call multi-channel SPLDA

Table 1. Female coreext det5 condition with noise added

SNR System EER(%) minDCF actDCF

Clean

SPLDA clean 2.65 0.46 0.50
SPLDA pool 2.90 0.55 0.90
MCSPLDA 3.03 0.53 0.62
Fusion 2.80 0.52 0.54

15dB

SPLDA clean 4.62 0.69 0.77
SPLDA pool 2.43 0.58 0.75
MCSPLDA 3.45 0.57 0.65
Fusion 2.83 0.56 0.60

6dB

SPLDA clean 9.85 0.90 0.97
SPLDA pool 4.77 0.74 0.76
MCSPLDA 4.91 0.69 0.71
Fusion 4.48 0.67 0.82

(MCSPLDA), where the speaker space distribution is com-
mon to all types of channels and the channel space distribu-
tion is different. This model can be seen as a mixture of PLDA
where the eigenvoices matrix V and the speaker factors y are
shared across the components of the mixture.

We showed results on the telephone part of the NIST
SRE10 extended condition where we added some noises to
the test segments. We compared results using a standard
SPLDA trained with pooled noisy and clean data, and our
MCSPLDA. We have seen that both clearly improve the per-
formance in noisy conditions compared to a SPLDA trained
only with clean data. However, there are very small differ-
ences of EER and minDCF between the SPLDA trained with
pooled data and the MCSPLDA. Something interesting is that
the likelihood ratios from the MCSPLDA are better calibrated
producing clearly lower actDCF.

In the future, we plan to go on researching on this kind
of models. An interesting approach would be combining
the strength of having a robust channel space estimated with
more data, as happens in the pooled SPLDA, with the strength
of having dedicated channels spaces. We can do that using
a Bayesian approach where we put a prior on the channel
space and the conditioned channel spaces are adapted from
that prior.
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