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ABSTRACT

Given a test waveform, state-of-the-art ASR systems extract a se-
quence of MFCC features and decode them with a set of trained
HMMs. When this test data is clean, and it matches the condition
used for training the models, then there are few errors. While it is
known that ASR systems are brittle in noisy or mismatched condi-
tions, there has been little work in quantitatively attributing the errors
to features or to models. This paper attributes the sources of these er-
rors in three conditions: (a) matched near-field, (b) matched far-field,
and a (c) mismatched condition. We undertake a series of diagnostic
analyses employing the bootstrap method to probe a meeting room
ASR system. Results show that when the conditions are matched
(even if they are far-field), the model errors dominate; however, in
mismatched conditions features are neither invariant nor separable
and this causes as many errors as the model does.

Index Terms— Features, acoustic conditions, hidden Markov
models, speech recognition.

1. INTRODUCTION

In this paper we will present a quantitative analysis that partially an-
swers the question “why is automatic speech recognition so brittle?”
One of the major contributing factors to this brittleness is the remark-
able inability of the standard acoustic model, the hidden Markov
model (HMM), to accurately model speech test data that differs in
character from the data that was used for its training. While there has
long been speculation about the root causes of this brittleness, rang-
ing from the over-fitting of the acoustic model to its training data to
the lack of invariance of the standard front-end (mel-frequency cep-
stral coefficients (MFCCs)), there is surprisingly little quantitative
evidence available to back up one claim over another. Furthermore,
the research aimed at improving HMM-based speech recognition ac-
curacy has largely ignored questions concerning understanding or
quantifying the underlying causes of recognition errors with notable
exceptions being [1, 2]. Instead, improvements–many of which are
reviewed in [3, 4, 5, 6, 7]–to the front-end and the acoustic models
have largely proceeded by trial and error. The research that we will
describe is a continuation of the research described in [8, 9] that used
simulation and a novel sampling process to quantify the effects that
the two major HMM assumptions have on recognition accuracy. In
this previous work, we analyzed recognition performance on tasks1

where the properties of the training and test acoustic data were not
challenging and were homogeneous, or matched, across the training
and test sets. In this paper, however, we will be analyzing recog-
nition performance using the ICSI meeting corpus [10] where the

1Based on the Wall Street Journal and Switchboard corpora.

acoustic data are more challenging and we are able to exploit prop-
erties of this corpus to compare recognition performance when the
training and test data acoustics are matched or mismatched.

More specifically, we use the parallel recordings using near and
far-field microphones in the ICSI meeting corpus [10] to construct
three sets of related recognition tasks: (a) matched near-field acous-
tic model training and recognition test data; (b) matched far-field
acoustic model training and recognition test data; (c) mismatched
near-field acoustic model training data and far-field recognition test
data. The results of our analysis in the matched cases (a) and (b) are
identical to what we found in [9], namely that 1) long range statisti-
cal dependence that is present in speech data and at variance with the
HMM’s conditional independence assumption is the single largest
source of recognition errors and that 2) that MFCCs are essentially
separable under this model. However, the results of our analysis
is quite different in the mismatched case (c): here we demonstrate
that the lack of invariance that MFCCs exhibit to the transformation
between the near and far-field acoustics is a major source of recog-
nition errors, approximately equal to the number of recognition er-
rors caused by statistical dependence in the data. Together these two
sources of errors dominate in the mismatched case and are the major
cause of brittleness in automatic speech recognition.

The experimental methodology of this paper is quite involved,
and it drives the overall structure. Section 2 outlines the prepara-
tion of the data in terms of partitioning and time alignments. Model
building and resampling are presented in Sections 3 and 4. The main
diagnostic experiments, followed by an interlude on adaptation, are
reported in Section 5. Concluding remarks are presented in Sec-
tion 6.

2. DATASETS

We are using a dataset of spontaneous meeting speech recorded at
ICSI [10] where each spoken utterance was captured using near-field
(NF) and far-field2 (FF) microphones. Our training set is based on
the meeting data used for adaptation in the SRI-ICSI meeting recog-
nition system [11]. For the test set we used the ICSI meetings drawn
from the NIST RT eval sets [12, 13, 14]; this was done to control the
variability in the data for the resampling experiments.

The remainder of this section discusses the creation of the par-
allel NF and FF corpora for this paper. First we describe how we
estimate and remove a variable length time delay that exists between
the corresponding NF and FF utterances, so that each training and
test utterance has two parallel versions–NF and FF–that line up at
the MFCC frame level. Next we discuss how we partition these par-
allel NF and FF corpora data into training and test sets.

2We used the “single distant microphone” recordings for the far-field data.
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Fig. 1. Time alignment: (a) NF (blue) and FF (green) signals (b)
Cross-correlation between the signals.

2.1. Time-aligning the corpora

In order to synchronize the NF and FF recordings, we must deal with
a time delay, or skew, that exists between the two recordings. These
time delays arise from two factors: (1) different physical distances
between the speakers and the microphones, and (2) systematic delays
introduced by the recording software. The latter factor appears to
dominate the skew between the NF and FF recordings. Fixed delays
were introduced when the channels were initialized at the start of a
recording. Since this systematic delay dominates the skew, the NF
recordings have a time delay relative to the FF recordings. Fig 1(a)
illustrates an utterance captured by the FF microphone that is ad-
vanced in time in comparison to the same utterance captured by the
NF microphone.

Time delay is more evident in the cross-correlation between the
NF and FF signals, as shown in Fig 1(b). The delay could be esti-
mated by searching for a peak in the cross-correlation sequence. In
Fig 1(b) the peak is at a lag of 41.88 ms (670 samples at 16 kHz).
However, this detection could be difficult because of the recording
quality and noise. To guarantee a more precise detection, we di-
vide each utterance into overlapping windows, where the window
size is a third of the utterance length and the step size for successive
windows is a tenth of the utterance length. For each step, the cross-
correlation sequence is calculated and a delay is estimated. If the
variation between the estimated delays in the windows for a given ut-
terance is too large, then the estimated delay is regarded as unreliable
and the utterance is discarded. Approximately 30% of the utterances
were discarded because of these unreliable delay estimates. The de-
lays between NF and FF channels for the reliable data ranged from
12.5 ms to 61.25 ms. This was implemented using the Skewview
tool [15]. A more detailed discussion of the time delay can be found
in [16].

2.2. Data partitions

Because of the parallel nature of the NF and FF corpora, the data
partitions are identical. For simplicity, we describe the NF partition-
ing. The training set had a dominant speaker accounting for nearly
a quarter; clearly this would skew the data generated by the resam-
pling process. On the other hand, perfect speaker balancing cannot
be achieved given that this is a corpus of spontaneous speech. There
is, therefore, a trade-off between “the amount of data” and an “egal-
itarian distribution of speakers”. The resulting NF training and test
sets consists of about 20 hours and 1 hour respectively and their
statistics are reported in Table 1.

Table 1. Training and test statistics for NF and FF.
Dataset Speakers Utterances Time
Training 26 23729 20.4 (hrs)

Test 18 1063 57.9 (mins)

3. MODELS AND EXPERIMENTAL SETUP

We use version 3.4 of the HTK toolkit [17] for the front-end, acous-
tic model training, and decoding. In particular, we use the stan-
dard HTK front-end to produce a 39 dimensional feature vector ev-
ery 10 ms: 13 Mel-cepstral coefficients, including energy, plus their
first and second differences. The cepstral coefficients are mean-
normalized at the utterance level. We use HDecode for decoding
with a wide search beam (300) to avoid search errors. To evaluate
recognition accuracy the reference and the decoded utterances are
text normalized before the NIST tool sclite is used to obtain word
error rate (WER). The remainder of this section discusses the recog-
nition acoustic models, dictionary, and language model.

3.1. Near-field acoustic models

The NF acoustic models use cross-word triphones and are estimated
using maximum likelihood. Except for silence, each triphone is
modeled using a three-state HMM with a discrete linear transition
structure that prevents skipping. The output distribution for each
HMM state is a single, multivariate Gaussian with diagonal covari-
ance. While signicantly better performance can be achieved with
mixtures of more components, the simplicity of a single component
is preferable for our analysis; it also highlights the performance dif-
ferences between our experiments. Maximum likelihood training
roughly follows the HTK tutorial: monophone models are estimated
from a “flat start”, duplicated to form triphone models, clustered to
2500 states and re-estimated.

3.2. Far-field acoustic models: via single-pass retraining

Instead of building the FF acoustic models from a flat start, we ex-
ploit the parallel nature of the NF and FF training sets to build the
FF models using single-pass retraining from the final NF models and
the FF data. Single-pass retraining is a form of EM, which is sup-
ported by HTK, where, in our case, the E-step is performed using the
NF models and data, while the M-step and model updates use the FF
data. We only update the means and variances of the FF models, so
the result is a parallel set of NF and FF acoustic models that share
the same state-tying but the (unknown) transformation between the
NF and FF means and variances is determined by the frame-level
transformation between the parallel NF and FF acoustic data.
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3.3. Dictionary and language models

Since we are using relatively simple acoustic models– single mixture
component per state and 2500 tied states–and that the recognition
task is much more complex compared to [8, 9], we use a powerful
language model (LM) to keep the error rate manageable. In fact, our
initial experiments using a weaker LM derived from the training set
resulted in WERs as high as 64% in the matched NF condition.

We use a LM [18] that was trained at SRI by interpolating a
number of source LMs; these consisted of webtext and the transcripts
of the following corpora: Switchboard, meetings (CMU, ICSI, and
NIST), Fisher, Hub4-LM96, and TDT4. We then removed words not
in the training dictionary from the trigram LM, and renormalized it.
The perplexity of this meeting room LM is around 70 on our test set.
To avoid out-of-vocabulary issues, all test utterances containing a
word not present in the LM are removed. To be compatible with the
SRI LM, we use the SRI pronunciation dictionary; it uses two extra
phones in comparison with the CMU phone set–“puh” and “pum”–
for hesitations.

4. SIMULATION AND RESAMPLING METHODOLOGY

We use simulation and a novel sampling process to generate pseudo
test data that deviate from the major HMM assumptions in a con-
trolled fashion. The novel sampling process, called resampling, was
adapted from Bradley Efron’s work on the bootstrap [19] in [8, 9].
These processes allow us to generate pseudo data that, at one ex-
treme, agree with all of the model’s assumptions, and at the another
extreme, deviate from the model in exactly the way real data do.
In between, we can precisely control the degree of data/model mis-
match. By measuring recognition performance on this pseudo test
data, we are able to quantify the effect of this controlled data/model
mismatch on recognition accuracy.

4.1. The simulation and resampling process

Our methodology allows six levels of simulation and resampling:
(a) simulation (b) frame resampling (c) state resampling (d) phone
resampling (e) word resampling (f) original test utterance.

Simulation: We follow the full generative process assumed by
HMMs. The simulated data, therefore, matches all the assumptions
of the model. These assumptions are: (a) the sequence of states are
hidden and are constrained to follow a Markov chain (b) the features
are independent conditioned on the states (c) the output distributions
are stationary and can be modeled using a single Gaussian.

To generate the test data by simulation, we start with the test
transcriptions, and look up each word in the pronunciation dictio-
nary to create phone transcriptions. We then use the state transitions
and the output distribution associated with the states belonging to
the triphones to generate the data. Note however that the delta and
acceleration features are also generated.

Frame resampling: In this case, we do not use the full generative
process. Nevertheless, we create data that respects the independence
assumptions at different levels. To generate the data in this fashion
the following process is performed: (a) we use the training model
is used to perform forced alignment on the training utterances, so
that each speech frame is annotated with its most likely generating
state. (b) We walk through this alignment, filling an urn for each
state with its representative frames; at the end of this process, each
urn is populated with frames representing its empirical distribution.
(c) To generate resampled data, we use the model to create a forced
alignment of the test data, and then sample a frame (at random, with

replacement) from the appropriate urn for each frame position; these
resampled frames are concatenated. With this frame-level resam-
pling, the pseudo test data is exactly the same length as the original,
and has the same underlying alignment, but the frames are now con-
ditionally independent (given the state).

State, phone, and word resampling: By placing entire state se-
quences of frames in the urns, and then resampling (again, concate-
nating samples), we end up with pseudo test data with dependence
among frames within state regions, but independence across state
boundaries (note that resampling units larger than single frames pro-
duces pseudo test data that may be a different length from the origi-
nal). We can further extend this idea to phones and to words; in all
cases, the urn labels include the full triphone context.

4.2. Enforcing common alignment for NF and FF

In the previous sections, we described the methods used to ensure
that the datasets and the models are completely parallel in the near-
field and the far-field cases. This was done so that the errors in the
mismatched case can be attributed solely to either the features or the
models. However, one more variability remains, and that is in the
resampling process.

The method of resampling creates an alignment of the training
dataset using the recognition model; it then uses the alignments to
fill urns that are in turn used to create the pseudo test utterances.
The differences in the alignments created by the near-field and the
far-field model will lead to the creation of pseudo test sets that are
not parallel, leading to the near-field model trying to compensate,
in addition, for a mismatched alignment. In order to minimize this
effect, we create alignments using the near-field model on the near-
field data, and use this alignment to generate pseudo, far-field test
data (for the mismatched case).

5. RESULTS AND DISCUSSION

Near-field and far-field test data are created by simulation, resam-
pling frames, states, phonemes, and words; then the corresponding
recognition models are used for decoding. Each resampling experi-
ment is repeated five times and the results are shown in the Table 2.
In the matched NF experiments, NF models are used to recognize
NF test data, while the matched FF experiments use FF models and
FF test data. In the mismatched experiments, NF models are used
to recognize FF test data. Listed in the table for the matched and
the mismatched cases are the word error rate (WER), standard error
(SE), and the relative increase in WER from previous level of simu-
lation/resampling (the next highest row). The standard errors range
from 0.03 (simulation in the NF case) to 0.45 (word resampling in
the FF case), so all the WER differences between matched and mis-
matched conditions are significant. Note that the WERs on the test
data increase as we move from NF (44.7%) to FF (71.4%), and then
to the mismatched conditions (84.7%); this indicates the difficulty of
the tasks.

5.1. Analysis of matched near-field results

It is remarkable to see that the WER for simulation and frame resam-
pling is negligibly small in meeting room data, albeit with near-field
microphones; for these cases all assumptions made by the model are
satisfied by the data. When this is the case, the WER obtained by
the system must be similar to human performance. The largest in-
crease in WER is observed when we move from frame resampling
to state resampling – a little more than a four-fold increase in errors.
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Table 2. Results for the matched (near-field and far-field) and the mismatched cases. For each of these cases, the word error rate (WER),
standard error (SE), and the increase (%) in WER obtained over the next higher level of resampling are listed.

Resampling Near-field Far-field Mismatched
WER (%) SE ∆WER (%) WER (%) SE ∆WER (%) WER SE ∆WER (%)

Sim 1.4 0.03 - 1.8 0.03 - 43.0 0.23 -
Frame 1.9 0.05 31 3.4 0.02 88 59.9 0.26 39
State 9.6 0.17 416 23.2 0.2 580 75.8 0.27 27

Phone 21.4 0.21 123 45.5 0.41 96 80.6 0.29 6
Word 37.6 0.28 75 63.5 0.45 40 80.6 0.15 0

Original 44.7 19 71.4 12 84.7 5

Another large increase in WER (123%) occurs when we move down
to phone resampling. As dependence is introduced (going down the
rows), we start observing larger WER. These results are consistent
with what we observed in [9] on the WSJ and Switchboard corpora,
both of which which also had matched training and test conditions.

5.2. Analysis of matched far-field results

Although the WER is consistently worse for the FF results than the
NF results, they are consistent with what we observe in the NF ex-
periments and in [9]. However, it is striking how small the WER
for simulation (1.8%) is when we consider how large the WERs are
on real FF data (71.4%). This shows that, when the training and
test conditions are matched, and the model assumptions implicit in
HMM’s are met, MFCC features are essentially separable even for
the more challenging FF meeting data.

5.3. Analysis of the mismatched case

The results in the mismatched case are in stark contrast to those
obtained for the matched cases. The WER for simulation is much
higher at 43%, which indicates that MFCCs are not separable in this
mismatched case. While the errors due to statistical dependence–the
WER from the state resampling to the original data–are consider-
able (from 59.9% to 84.7%), they are no longer the dominant cause
of recognition errors.

To better understand the mismatched simulation result, we com-
pare it to the matched, NF simulation result. In both cases we use
NF models to recognize simulated data: in the matched case this
data is simulated by the NF models, while in the mismatched case
this data is simulated from the FF models. Because we used single-
pass retraining (Section 3.2) to create the FF models from the NF
models, the unknown transformation between the NF and FF means
and variances is inherited from the unknown transformation between
the parallel NF and FF training utterances. Thus the transformation
between the test utterances simulated from the NF and FF models
is derived from the transformation between the NF and FF models,
and it is related to, but much simpler than, the transformation be-
tween the parallel NF and FF training data. The NF models have
a low WER on the simulated NF test data (1.4%), but they have a
high WER (43%) on the simulated FF data which is transformed
simulated NF data. If the features (MFCCs) were invariant to this
transformation, then the WERs would be similar. However, since
the WERs are very different, the features cannot be invariant, and
the large difference in WERs is due to this lack of invariance.

5.4. Adaptation

A standard approach to mitigating recognition errors due to mis-
matched conditions is to perform unsupervised MLLR [20], a form
of linear mean adaptation. Since the large difference between the
matched NF and mismatched simulation and results is due to the
lack of invariance of MFCCs to a (presumably) non-linear transfor-
mation between the NF and FF data, it is natural to try to compen-
sate for this using MLLR. We treat the one hour of simulated test
data as belonging to one speaker, and use the recognition hypothe-
ses to generate the adaptation transforms for the NF models. We
do two passes of adaptation: in the first pass a global adaptation is
performed, while the second pass uses a regression class tree. We
experimented with up to 16 regression classes in the second pass,
but we found that 3 classes were optimal. In this case the simulation
WER improves from 43.0% to 15.4%. While this is a large improve-
ment, the adapted WER, 15.4%, is still much higher than the 1.4%
WER on simulated NF data.

6. CONCLUSIONS

By exploiting the method of resampling, we constructed a series of
pseudo datasets from near-field and far-field meeting room datasets,
that at one end satisfied the HMM model assumptions, while at the
other end deviated from the model in the way real data did. Us-
ing these datasets we probed the standard HMM/GMM framework
for automatic speech recognition. Experiments show that when the
conditions are matched (even if they are far-field), the model errors
dominate; however, in mismatched conditions features are neither
invariant nor separable, and contribute as much to the total errors
as does the model. We then studied unsupervised MLLR adaptation
as a means to compensate for this issue in the model space; while
this approach mitigates the errors, the conclusions about the lack
of invariance of the MFCC features in mismatched conditions still
holds true. As part of future work, this study paves way for princi-
pled investigations into other spectro-temporal representations (say
Gabor [21]).
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