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ABSTRACT
Automatic speech recognition is a core component of many appli-
cations, including keyword search. In this paper we describe ex-
periments on acoustic modeling, language modeling, and decoding
for keyword search on a Cantonese conversational telephony corpus
collected as part of the IARPA Babel program. We show that acous-
tic modeling techniques such as the bootstrapped-and-restructured
model and deep neural network acoustic model significantly outper-
form a state-of-the-art baseline GMM/HMM model, in terms of both
recognition performance and keyword search performance, with im-
provements of up to 11% relative character error rate reduction and
31% relative maximum term weighted value improvement. We show
that while an interpolated Model M and neural network LM improve
recognition performance, they do not improve keyword search re-
sults; however, the advanced LM does reduce the size of the key-
word search index. Finally, we show that a simple form of auto-
matically adapted keyword search performs 16% better than a pre-
indexed search system, indicating that out-of-vocabulary search is
still a challenge.

Index Terms— acoustic modeling, language modeling, boot-
strap, deep learning, keyword search

1. INTRODUCTION

The IARPA Babel program is a research program to develop tech-
nologies that enable rapid deployment of spoken term detection sys-
tems for low-resource languages. In this work, we focus on speech
recognition and keyword search experiments on Cantonese conver-
sational telephony speech collected for the first period of the Babel
program, although the techniques we describe are also being applied
to Pashto, Tagalog, and Turkish. We explore the effects of different
automatic speech recognition methods on Cantonese keyword search
performance using two different query lists: a 389-term list used for
system development that was created by the Babelon and RADICAL
teams in the Babel program and a larger 1000-term list used in a dry
run evaluation held in August 2012.

In Section 2 we describe four different acoustic models used
in this work: a state-of-the-art baseline GMM/HMM model, a
GMM/HMM model trained using the bootstrap-and-restructuring
procedure, a deep neural network acoustic model, and a GMM model
that uses deep neural network features. In Section 3 we describe
three language models used in this work: a baseline tri-gram LM, a
Model M LM, and a neural network LM. In Section 4 we describe
the metric used to measure keyword search performance and explain
our approach to audio indexing and keyword search, which is based
on weighed finite state transducers. We present experimental results
in Section 5 and draw conclusions in Section 6.

2. ACOUSTIC MODELING

2.1. Baseline GMM/HMM Model

The baseline GMM/HMM model is a discriminatively trained
speaker adaptive model trained using IBM’s standard procedures [1].
The feature space is derived from 13-dimensional PLP features.
Acoustic context is taken into account by splicing 9 adjacent frames
of mean-normalized PLP features and then projecting to a 40-
dimensional feature space using linear discriminant analysis (LDA),
followed by a global semi-tied covariance (STC). Vocal tract length
normalization and speaker adaptive training (SAT) using a sin-
gle feature-space maximum likelihood linear regression (FMLLR)
transform are used to reduce speaker variability. Following SAT
training, feature- and model-space discriminative training are car-
ried out under the boosted maximum mutual information (BMMI)
criterion. At test time, additional speaker adaptation is performed
with multiple MLLR transforms. The baseline GMM/HMM model
has 3,000 quinphone states and 200K Gaussians. Similar baselines
have been used in previous evaluation systems [2, 3, 1], but in the
previous work there were more resources available for acoustic and
language model training than are provided in the Babel program.

2.2. Bootstrap and Restructuring Model

Bootstrap and restructuring (BSRS) is a statistical approach based
on subset bagging to deal with limited training data [4]. In BSRS,
the training utterances are first sampled without replacement into N
subsets and an HMM is trained from each subset. As a sequence
classifier, the discriminant function for the HMM λB is defined as

DλB (O, S) =

TX
t=1

log fBst
(Ot) +

TX
t=2

log ast−1st + log πs1

where O and S are feature and state sequences, respectively.
fBst

(Ot) is the state observation probability density function (PDF),
which usually assumes a GMM distribution. aij and πi are state
transition probabilities and initial probabilities which we assume to
be the same for all HMMs. The discriminant functions from the
randomized HMMs are then aggregated for a more reliable decision
in sequence classification, which with some approximations has the
form

ELB{DλB (O, S)} ≈
TX
t=1

log ELB{fBst
(Ot)}

+

TX
t=2

log ast−1st + log πs1 .
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Aggregation produces an HMM whose state observation PDF is

fAs (Ot) = ELB{fBs (Ot)} =

NX
i=1

X
k∈λB

i (s)

ckN (Ot;µk,Σk)

It is equivalent to an HMM with Gaussian components from all N
individual randomized HMMs.

Although this aggregated HMM achieves better performance, it
has a substantial number of parameters. It is therefore desirable to
restructure the model to a smaller size. Restructuring is a process
of Gaussian clustering followed by model refinement. The Gaussian
clustering uses a greedy algorithm to merge pairs of Gaussians based
on the entropy metric. After clustering, the clustered Gaussians are
further refined by Monte Carlo based Kullback-Leibler minimiza-
tion. In the end, feature- and model-space discriminative training
with the BMMI objective is performed on the restructured HMM,
just like the baseline model. The BSRS model has 5,000 quinphone
states and 240K Gaussians.

2.3. Deep Neural Network Hybrid Model

The deep neural network (DNN) hybrid model uses the same
speaker-adaptive (SA) feature pipeline as the GMM and BSRS mod-
els, and a set of quinphone context-dependent HMM state targets
defined using standard state clustering procedures. The first stage
of DNN training is a greedy, layer-wise discriminative pretraining
step [5] using the cross-entropy criterion and backpropagation. Each
layer is trained using one pass over the training set and keeping the
weights in all preceding layers fixed. After pre-training, the weights
for the softmax layer are randomly initialized, and then the entire
network is trained using the cross-entropy objective function. This
training process monitors performance on a held-out set to deter-
mine when to reduce the learning rate and when to terminate train-
ing [6]. Finally, the DNN model is trained with the state-level min-
imum Bayes risk criterion using a distributed implementation [7] of
Hessian-free optimization [8], with progress monitored on the same
held-out set as in the cross-entropy training. The DNN hybrid model
uses 9 frames of input features (PLP+LDA+STC+FMLLR, with
no pitch), contains five hidden layers with 2,048 hidden units per
layer. For the hybrid model, the softmax layer has 3,000 quinphone
context-dependent states, the same number of context-dependent
states in the HMM model. This choice was based on prior work [9]
showing that deep networks benefit from using a state alphabet as
large as that used by a standard GMM/HMM system.

2.4. Deep Neural Network Features Model

In addition to the hybrid DNN model, we also built a DNN features
model (DNN-fea) in which the neural network is used to compute
acoustic features for a standard GMM acoustic model. The DNN
architecture and training procedures are identical to those in Sec-
tion 2.3, except that a smaller set of 512 context-dependent HMM
state output targets is used. After training is done, we extract prob-
abilistic DNN features from the input to the softmax layer of the
DNN, using principal components analysis (PCA) to reduce the fea-
ture dimensionality from 512 to 40. We use the PCA-based approach
instead of the autoencoder approach [10] because the performance
of the two methods is very similar, and the PCA training is much
faster. We use a smaller number of output targets because we have
found in a set of unpublished experiments that the performance of
probabilistic neural network features is better when the network has
a relatively small number of context dependent HMM state targets,

probably because the dimensionality reduction task is simpler. As
in [11], nine frames of the PCA features are spliced then project to
40 dimensions using an LDA followed by a global STC transform,
then a standard GMM/HMM acoustic model is built from these fea-
tures. Finally, feature- and model-space discriminative training with
the BMMI objective is performed, like for the baseline and BSRS
models. The GMM acoustic model has the same number of states
and Gaussians as the baseline system.

3. LANGUAGE MODELING

Our baseline LM is a word-based tri-gram LM with modified
Kneser-Ney smoothing. We also explored using a neural network
language model (NNLM) [12, 13] and Model M [14] language
model. Model M is a maximum-entropy language model that uses a
specific form of L1 + L2 regularization and word class features to
achieve better generalization performance than standard n-gram lan-
guage models. The NNLM achieves better smoothing by represent-
ing words in a continuous space, where the mapping into continuous
space is learned such that words with similar properties are mapped
to nearby locations.

4. BABEL KEYWORD SEARCH

KWS performance is measured as Term-Weighted Value [15], a
function of the probability of missed detections and the probability
of false alarms:

TWV (θ) = 1− [PMiss(θ) + β · PFA(θ)]

where θ is the threshold used to determine a hit or a miss and
β = 999.9 is a weight that accounts for the presumed prior proba-
bility of a term and the relative costs of misses and false alarms. We
report keyword search performance in terms of the maximum term-
weighted value (MTWV), which is an oracle metric corresponding
to the best TWV for all values of the decision threshold, θ.

There are two variations of the KWS task: automatically adapted
KWS (AA-KWS) and pre-indexed KWS (PI-KWS). The former al-
lows system components (including the lexicon, acoustic models,
and language models, and audio indexes) to be modified via auto-
matic procedures after keywords are provided to developers; the lat-
ter requires that the system components and word indexes be frozen
before keywords are provided to developers.

The keyword terms are split into two categories: in and out of
vocabulary). The in-vocabulary (IV) terms are searched through a
word index. A popular approach for handling the Out-of-Vocabulary
(OOV) problem is to search sub-word lattices [16, 17, 18]. In this
approach it is assumed that at query time an orthographic represen-
tation of the term can be converted to a sensible phonetic represen-
tation. This is typically done using grapheme to phoneme conver-
sion algorithms which may not work accurately for all query terms.
For Cantonese, which is an ideographic language, we used a rule
based approach to generate pronunciations for OOV words. The
OOV terms are searched for in a phonetic index derived from word
lattices.

We use a two-pass variant of weighted finite state transducer
indexing and search, where the lattice indexes (utterances) are iden-
tified in the first pass and the second pass loads the relevant lattices
and extracts the time marks corresponding to the query. For more
details on our indexing system please refer to [19].
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5. EXPERIMENTAL RESULTS

5.1. Data and model Description

The Babel training data for each language includes both conversa-
tional and scripted telephony speech data collected using mobile and
fixed telephone networks. The conversational data are free-speech
conversations that approximately 10 minutes in duration, and are
between two speakers, usually friends or family members, with a
broad coverage of topics and vocabulary. Each of the two speak-
ers is recorded on a separate channel which is stored in a separate
signal file. Although the test data is limited to conversational data,
the training package includes scripted data which are designed to
achieve broad coverage of the selected language. Prompt sheets are
used and are distributed to speakers. The prompts consist of text
to be read (generating read speech) and questions or tasks to be an-
swered (generating short spontaneous speech). The data collection
attempts to cover a broad speaker population, and includes a variety
of dialects and speaker ages, and is approximately gender-balanced.
The scripted data transcripts are labeled by content (e.g., number,
date, money, name or location). This is potentially useful informa-
tion for word classing or other language modeling methods.

In the Babel Cantonese training set, there is 192 hours of train-
ing audio (156 hours for conversational and 36 hours for scripted
data), but only 40–50% of the audio is speech. In addition, a sig-
nificant portion of the audio data is labeled as non-lexical speech
events (e.g., unintelligible speech, hesitations, mispronunciations,
fragments, truncations and foreign words) or non-speech events
(e.g., breath, cough, ring, laugh, or lip smack). The development
data contains 20 hours of conversational data. Overall, the data
poses a good challenge to acoustic modeling in terms of spontaneous
speaking style, dialect diversity, speaker variability, environment and
channel robustness, and sparse data.

5.2. Speech Recognition and Keyword Search Results

The IBM Attila toolkit [1] is used for all ASR training (both GMM
and DNN models) and decoding. The toolkit provides two different
decoders, a dynamic network decoder [3] and static WFST decoder.
The baseline GMM/HMM and BSRS models use the static decoder,
while the other models use the dynamic decoder. Combining lat-
tices from different decoders has been shown to improve keyword
search performance [20]. We report speech recognition performance
in terms of character error rate (CER).

Table 1 shows that the BSRS model gives 0.6% absolute im-
provement over the baseline GMM/HMM, while the DNN hybrid
model and DNN features model give 5.9% and 3.1% absolute CER
improvement, respectively. These results are consistent with previ-
ous work. The bootstrap-and-restructuring approach was previously
used for the DARPA Transtac project [4] to deal with data sparsity
in the Dari and Pashto languages, and DNN-based acoustic models
have been shown to outperform traditional GMM/HMM models on
a variety of speech recognition benchmarks by a number of research
groups [21]

5.3. Language Modeling

For Babel Cantonese language model training, only the acoustic
transcripts are available, which poses a significant data sparsity chal-
lenge. The training transcripts include a total of 106K sentences
and 992K words. The vocabulary contains 25K words. Scripted
data is included in LM modeling because adding it improves KWS
performance, even though it does not help recognition performance.

Model CER
GMM/HMM 55.9
BSRS 55.3
DNN hybrid 50.0
DNN features 52.8

Table 1. Character error rates (CER) for four acoustic models.

Model Rescored-CER (Baseline-CER)
GMM/HMM 54.4 (55.9)
BSRS 53.8 (55.3)
DNN 49.0 (50.0)

Table 2. CERs after lattice rescoring with interpolated NNLM and
Model M

Given the small data set, a 4-gram LM has slightly worse perplex-
ity on development data than a tri-gram LM (123.9 vs. 123.3), even
with modified Kneser-Ney smoothing, so we use the tri-gram as our
baseline. The out-of-vocabulary (OOV) rate on the development set
is 8.4%.

A Model M LM with 150 automatically generated word classes
lowers the perplexity on development data to 116. With simple pro-
cessing, words in the scripted transcriptions are labeled as terms of
address, numbers, dates, money, names and scripts. Integrating those
labels in Model M can lower the perplexity to 117. Our NNLM is
a word-based 4-gram model that uses a 30-dimensional embedding
space for the words. It has 100 hidden units and predicts all words
in the vocabulary. The NNLM alone doesn’t provide very good per-
plexity (130), but when it is interpolated with Model M with 150
word classes, it can improve perplexity to 109. This interpolated
LM can lower CER through either lattice re-scoring or decoding,
both leading to similar improvement. Table 2 shows that the interpo-
lated LM consistently yields 1% absolute improvement in CER over
the baseline LM. Thus, we see that Model M and the NNLM both
work even with sparse training data.

5.4. Lattice Analysis

The KWS system indexes lattices. Although some lattices have sim-
ilar one-best path CER results, their contribution to the KWS per-
formance can vary greatly. Table 3 shows lattice densities, keyword
miss rates, and keyword search performance for different combina-
tions of acoustic model and language model, with different levels of
pruning. All results in this subsection are for pre-indexed keyword
search. Scores (expected counts) for each query are normalized to
sum to 1.0 [20] in order to improve KWS performance (as measured
by MTWV). A detailed analysis of the effects of this normalization
on Babel keyword search may be found in [22].

The keyword miss rate indicates how many of the 1000 keyword
search terms from the August 2012 Babel dry run evaluation are not
present the lattices. MTWV scores are evaluated on the Babel de-
velopment test set with a list of 389 queries produced by the Babe-
lon and RADICAL teams. Of the 389 development terms, 361 are
searched for using in-vocabulary lexical search, while the remaining
28 are searched for using OOV phonetic search.

In Table 3, lattices generated by static decoding are marked (S),
while lattices generated by dynamic decoding are marked (D). We
experimented with both static decoding and dynamic decoding (Ta-
ble 3, rows 3 and 4) when using DNNs. Even though both lattices
have the same CER and similar densities, the lattices generated by
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Model lattice density Miss Rate MTWV
GMM/HMM(S) 678 0.176 0.335
BSRS(S) 691 0.171 0.359
DNN(S) 575 0.181 0.401
DNN S(D) 415 0.198 0.427
DNN M(D) 712 0.191 0.431
DNN L(D) 2876 0.177 0.440
DNN L(D) advLM 1224 0.183 0.441
DNN-fea S(D) 611 0.193 0.384

Table 3. Comparing various lattices in terms of lattice density (arcs
per second of audio), query miss rate on the dry run data, and key-
word search performance on the development data.

the dynamic decoder lead to better KWS performance (0.4270 vs.
0.4012 MTWV). The dynamic decoder offers more fine-grained con-
trol over various pruning parameters, allowing us to tune it to pro-
duce more diverse lattices (that is, lattices with containing a larger
number of word types at a given lattice density). Such diversity ap-
pears to improve keyword search performance.

For the same DNN model with the baseline LM, three lattice
sets are generated with different sizes: small ( S), medium ( M ),
and large ( L). Table 3 shows that deeper lattices provide additional
improvements in MTWV; however, beyond a certain size, no further
improvement is seen.

DNN advLM is generated by the interpolated NNLM and Model
M. Even though its MTWV score is almost the same as the ones
obtained with the best DNN and the baseline LM (Row DNN L(D)
in Table 3), when using the same lattice generation parameters, the
lattice size of DNN advLM is much smaller than that obtained from
the baseline LM (1224 vs. 2876). Thus, although the advanced LMs
do not improve keyword search performance, they do reduce the size
of the index significantly.

When compared to the baseline GMM/HMM model, the BSRS
model improves MTWV from 0.3352 to 0.3594. The DNN model
produces similar-sized lattices, but much better MTWV performance
(0.3842 vs. 0.3352). The best performance comes from the DNN
advLM, which is 0.4407, an improvement of 31% over the baseline
system.

5.5. Automatic Adaptation

We implemented a simple version of automatically adapted keyword
search and evaluated it on the Cantonese development data in terms
of MTWV. In this automatically adapted system, all query terms
(single and multiword) are added to the language model training
data as individual utterances. Each query term is added once as a
sentence. While this is a very simple method for adding the queries
to the language model, it has the advantage of ensuring that n-grams
from new multi-word queries appear in the language model. This
extension of the language model ensures that the new queries are
more likely to be included in the decoding lattices, especially when
they really occur in the reference. Thus, all OOV words from the
query terms were added to the lexicon. The audio to be searched
is subsequently decoded using the new lexicon and LM. While this
method for adding query terms to the LM is extremely simple, it has
the advantage of ensuring that all the query terms are covered by
high-order n-grams in the LM.

The results of this experiment are summarized below in Table 4.
The acoustic model used for indexing is the DNN model mentioned

Model CER lat-density MTWV
PI-KWS 50 415 0.427
AA-KWS 49.8 417 0.495

Table 4. Comparison of pre-indexed (PI) and automatically adapted
(AA) KWS with the DNN acoustic model.

in above sections. The lattices are generated using the dynamic de-
coder. We observe a 16% improvement in MTWV, which indicates
that there is a significant advantage for in-vocabulary queries, even
when they are added in a very simple manner.

6. CONCLUSIONS

In this paper, we present four different ASR systems using diverse
acoustic models, and measure their performance on a Cantonese key-
word search task. We observe that a deep neural network model can
improve not only transcription accuracy, measured by character error
rate, but also that it greatly improves keyword search performance.
Rescoring lattices with an advanced LM that interpolates a Model
M LM and neural network LM improves transcription accuracy, but
not keyword search performance. This is because rescoring does not
introduce any new words to the lattice; instead, it simply modifies
the scores of existing words in the lattice. However, the rescoring
does produce a smaller index with no loss in keyword search perfor-
mance. Different lattice generation methods may produce the same
CER but can yield very different keyword search results.

7. ACKNOWLEDGMENTS

We are grateful to Hong-Kwang Kuo, Ebru Arisoy and Hagen Soltau
of IBM Research for sharing their rich experience in language mod-
eling and system building. This effort uses the IARPA Babel Pro-
gram Cantonese language collection release babel101b-v0.4c. Sup-
ported by the Intelligence Advanced Research Projects Activity
(IARPA) via Department of Defense U.S. Army Research Labora-
tory (DoD/ARL) contract number W911NF-12-C-0012. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation
thereon. Disclaimer: The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed
or implied, of IARPA, DoD/ARL, or the U.S. Government.

8. REFERENCES

[1] H. Soltau, G. Saon, and B. Kingsbury, “The IBM Attila speech
recognition toolkit,” in Proc. IEEE Workshop on Spoken Lan-
guage Technology, 2010.

[2] S. Chen, B. Kingsbury, L. Mangu, D. Povey, G. Saon,
H. Soltau, and G. Zweig, “Advances in speech transcription
at IBM under the DARPA EARS program,” IEEE Trans. on
Audio, Speech and Language Processing, vol. 14, no. 5, pp.
1596 – 1608, 2006.

[3] H. Soltau and G. Saon, “Dynamic network decoding revisited,”
in Proc. ASRU, 2009.

[4] X. Cui, J. Xue, X. Chen, P. A. Olsen, P. L. Dognin, U. V.
Chaudhari, J. R. Hershey, and B. Zhou, “Hidden Markov

6756



acoustic modeling with bootstrap and restructuring for low-
resourced languages,” IEEE Trans. on Audio, Speech and Lan-
guage Processing, vol. 20, no. 8, pp. 2252–2264, 2012.

[5] F. Seide, G. Li, X. Chen, and D. Yu, “Feature engineering
in context-dependent deep neural networks for conversational
speech transcription,” in Proc. ASRU, 2011.

[6] H. Bourlard and N. Morgan, “A continuous speech recognition
system embedding MLP into HMM,” in Advanced in Neural
Information Processing Systems 2, D. S. Touretzky, Ed., 1990,
pp. 186–193.

[7] B. Kingsbury, T. N. Sainath, and H. Soltau, “Scalable mini-
mum Bayes risk training of deep neural network acoustic mod-
els using distributed Hessian-free optimization,” in Proc. In-
terspeech, 2012.

[8] J. Martens, “Deep learning via Hessian-free optimization,” in
Proc. Intl. Conf. on Machine Learning (ICML), 2010.

[9] T. N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek,
P. Novk, and A. Mohamed, “Making deep belief networks ef-
fective for large vocabulary continuous speech recognition,” in
ASRU, 2011, pp. 30–35.

[10] T. N. Sainath, B. Kingsbury, and B. Ramabhadran, “Auto-
encoder bottleneck features using deep belief networks,” in
Proc. ICASSP, 2012.

[11] F. Grezl, M. Karafiat, S. Kontar, and J. Cernocky, “Probabilis-
tic and bottleneck features for LVCSR of meetings,” in Proc.
ICASSP, 2007.

[12] Y. Bengio, R. Ducharme, and P. Vincent, “A neural probabilis-
tic language model,” in Proc. Neural Information Processing
Systems (NIPS), 2000.

[13] H. Kuo, E. Arisoy, A. Emami, and P. Vozila, “Large scale
hierarchical neural network language models,” in Proc. Inter-
speech, 2012.

[14] S. F. Chen, L. Mangu, B. Ramabhadran, R. Sarikaya, and
A. Sethy, “Scaling shrinkage-based language models,” in Pro-
ceedings of ASRU, 2009.

[15] J. G. Fiscus, J. G. Ajot, J. Garofalo, and G. Doddington, “Re-
sults of the 2006 spoken term detection evaluation,” in Proc.
SIGIR Workshop on Searching Spontaneous Conversational
Speech, 2007, pp. 51–57.

[16] Dogan Can, Erica Cooper, Abhinav Sethy, Chris White, Bhu-
vana Ramabhadran, and Murat Saraclar, “Effect of pronounci-
ations on OOV queries in spoken term detection,” Proceedings
of ICASSP, 2009.

[17] Murat Saraclar and Richard W. Sproat, “Lattice-based search
for spoken utterance retrieval,” in HLT-NAACL, 2004.

[18] Jonathan Mamou, Bhuvana Ramabhadran, and Olivier Siohan,
“Vocabulary independent spoken term detection,” in Proceed-
ings of SIGIR, 2007.

[19] C. Parada, A. Sethy, and B. Ramabhadran, “Query-by-example
spoken term detection for OOV terms,” in ASRU, 2009.

[20] L. Mangu, H. Soltau, H.-K. Kuo, B. Kingsbury, and G. Saon,
“Exploiting diversity for spoken term detection,” in Proc.
ICASSP, 2013. To appear.

[21] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kings-
bury, “Deep neural networks for acoustic modeling in speech
recognition,” IEEE Signal Processing Magazine, 2012.

[22] J. Mamou, J. Cui, X. Cui, M. J. F. Gales, B. Kingsbury,
K. Knill, L. Mangu, D. Nolden, M. Picheny, B. Ramabhadran,
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