
LANGUAGE MODEL CAPITALIZATION

Françoise Beaufays, Brian Strope

Google

ABSTRACT

In many speech recognition systems, capitalization is not an in-
herent component of the language model: training corpora are down
cased, and counts are accumulated for sequences of lower-cased
words. This level of modeling is sufficient for automating voice
commands or otherwise enabling users to communicate with a ma-
chine, but when the recognized speech is intended to be read by a
person, such as in email dictation or even some web search applica-
tions, the lack of capitalization of the user’s input can add an extra
cognitive load on the reader. For these cases, speech recognition sys-
tems often post-process the recognized text to restore capitalization.

We propose folding capitalization directly in the recognition lan-
guage model. Instead of post-processing, we take the approach that
language should be represented in all its richness, with capitaliza-
tion, diacritics, and other special symbols. With that perspective,
we describe a strategy to handle poorly capitalized or uncapitalized
training corpora for language modeling. The resulting recognition
system retains the accuracy/latency/memory tradeoff of our uncap-
italized production recognizer, while providing properly cased out-
puts.

Index Terms— Capitalization, language modeling, FST.

1. INTRODUCTION

In most European languages, casing patterns are part of regular
spelling and stylistic rules. The first word of a sentence is typically
capitalized, and so are proper names. Acronyms are often fully
upper cased (e.g. “IBM”, “NASA”) whereas abbreviations may vary
in their casing (e.g. “CA” or “Calif.” for California). Most often
capitalization affects a single letter, but occasionally two, as with the
Dutch “ij” pattern. Capitalization may be used to various extent in
titles (“The Turkish March” in English, but “La Marche turque” in
French). In some languages it helps distinguishing parts of speech,
e.g. nouns from verbs, adjectives, etc in German (“Arbeit” vs “ar-
beiten”), in others it is used only for some specific personal pronouns
(“arrivederLa” but “arrivederci” in Italian, “I” but “you” in English).
And of course fancy mixed cases are routinely chosen for product
names (“iPhone”, “LaTeX”, ...) adding to their visual saliency.
Capitalization rules and practices may vary across languages, but it
seems fair to claim that for someone familiar with a given language,
capitalization is part of the regular patterns we expect, which help
make reading faster and more pleasant.

Speech recognition systems however have traditionally ignored
capitalization, mostly out of concern that allowing different casings
will increase the vocabulary size (e.g. common name “mark” vs
proper name “Mark”), which in turn will cause data fragmentation
in the language model and erode recognition accuracy. A French
study [1] for example describes the out-of-vocabulary (OOV) de-
creases achieved through text normalization, including lower-casing,
on a mid-size (by current standards) language model corpus. In

many cases, this simplifying assumption is an acceptable engineer-
ing shortcut. With voice search from Google, simple voice actions
are legible even without capitalization, and voice queries are directed
to a search backend that is case insensitive. However, if the spoken
query is longer, and the user wants to glance at the recognition re-
sult, or if the application provides SMS dictation or voicemail tran-
scription, intended for a human to read, then capitalization is highly
desirable.

To reconcile readability with perceived engineering constraints,
capitalization is typically implemented as a post-processing step af-
ter recognition, often under the form of a second-pass rescoring. In
such implementations, a large capitalized language model is used
to restore capitalization, and possibly punctuation, to the first-pass
recognition result. Specific implementations include using a sim-
ple word mapping as implemented in the SRILM [2] disambig tool,
in which case the language model is used for statistical disambigua-
tion, or an FST framework where a lattice of capitalization alternates
is generated, composed with the language model, and searched for
the most probable rendition [4]. More sophisticated discriminative
techniques based on maximum entropy Markov models have also
been proposed [8]. A thorough comparison of such methods on Por-
tuguese Broadcast News can be found in [3]. Such approaches how-
ever add to the complexity of the overall recognition system, increase
its memory footprint, and affects the fluidity of streaming recogni-
tion. Moreover, one can easily argue that any statistical knowledge
that is relevant to text formatting pertains to language modeling and
should therefore be folded in the recognition model.

Following the general trend in the field, the Google recognizer
was providing uncapitalized recognition results until recently. The
unsupervised speech logs that form the bulk of the model training
material were therefore lower case. The rest of the training data,
mostly web typed entries, are also not reliable in their capitalization
formatting.

In the rest of this paper, we describe how we assembled a cor-
pus of well-formatted text data from which we could learn proper
capitalization patterns, and how we included this knowledge in our
recognition language model. We characterize the resulting capital-
ized system in terms of recognition and capitalization accuracy, and
provide some error analysis.

Although punctuation could to a large extent be modeled using
the same techniques that are described here for capitalization, it is
not the object of this paper and will not be described here.

2. INTRINSIC VS. POSITIONAL CAPITALIZATION

As suggested in the introduction, there are, broadly speaking, two
types of capitalization; we will refer to them as “positional capital-
ization” and “intrinsic capitalization”. By “positional capitalization”
we mean the practice of upper casing the first letter of the first word
of a sentence, irrespective of the part of speech or nature of the word.
By “intrinsic capitalization” instead, we mean upper casing certain

6749978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

letters in a word or group of words independently of their position in
the sentence (proper names, abbreviations, etc).

As a matter of system design, we would argue that positional
capitalization is best handled by the client code running on the final
device that renders text to the user, whether typed or spoken. The
client has knowledge of the full message being composed on the de-
vice independently of how it was assembled, which could include a
mix of modalities and potential corrections. Such context informa-
tion can be communicated to the server-side recognizer, but it seems
practical to avoid doing so if not truly necessary. Depending on the
application, positional capitalization may be required (for example
in a dictation app) or not (there is little need to capitalize the web
search ’pictures of kittens’). On the other hand, intrinsic capitaliza-
tion is best handled on the server side since it is a more complex
problem, and requires a larger statistical model to make the right
capitalization decisions.

For these reasons, we will leave positional capitalization to the
client, and focus exclusively on intrinsic capitalization. That simpli-
fication also reduces some of the complexities and potential redun-
dancies for modeling the first word after a start-of-sentence symbol.

3. CAPITALIZATION FRAMEWORK

3.1. High-Level Approach

To train a capitalized recognition language model, we need training
data sources that themselves are capitalized. However, our most rel-
evant training data, such as search typed logs or logs from previous
spoken interactions with our systems are poorly capitalized when at
all. Better formatted data sources such as news corpora, books, or
online publications, would offer the right capitalization patterns, but
would almost necessarily be mismatched with the tasks users expect
to perform by speech, and the language models built from this data
would offer lower recognition accuracy than well-matched, but un-
capitalized, training data.

For this reason, we adopted a two-step procedure: we first used
well-formatted, but somewhat mismatched text to capitalize our lan-
guage model training data; and then trained final models from these
well-matched, and now re-capitalized sources. This way, formatting
the data, and matching the data to the domain are essentially kept
independent of each other.

We will now describe how to capitalize language model training
corpora given a well-formatted, capitalized, language model. Af-
ter that, we will explain how we trained this reformatting language
model.

3.2. FST-Based Capitalization Methodology

Assume a large, capitalized, language model is trained from well-
formatted text. We will call this model the Capitalization LM. The
Capitalization LM may be trained from a variety of written mate-
rial. It is expected to have broad coverage, but does not need to be
extremely well matched with the target recognition tasks. For ref-
erence, the Capitalization LM used in this paper makes on average
25% relative more word errors than the baseline production language
model, so it is considered non-competitive as a production model.

The Capitalization LM however can be used to restore capital-
ization in the training data used to estimate the production model.
We use an finite state transducer (FST) infrastructure similar to the
one described in [4]. The symbol table of the Capitalization LM is
used to derive a mapping from all possible mixed-case words in the

Fig. 1. Capitalization pipeline.

LM to their lower-case equivalent, and vice-versa; e.g. we can de-
rive that “iphone” is rendered as “iPhone” in the Capitalization LM,
or that “curiosity” can be rendered in lower case (common noun)
or upper case (the Mars rover). This mapping takes the form of a
transducer, T, also refered to as Capitalization FST. Counts for the
realizations with different cases are not kept.

A lower-cased input sentence to be capitalized is first repre-
sented as an FST, S. That FST is composed with T. The resulting
lattice contains all the possible capitalization alternatives for the in-
put sentence. The lattice is then composed with the Capitalization
LM to apply weights to the various lattice paths. The shortest path,
P, through the lattice provides the highest-likelihood capitalization
for the given input sentence. This is summarized in Eq. 1 and illus-
trated in Fig. 1.

P = bestpath(S ◦ T ◦ LM) (1)

Note that this FST manipulation only affects the capitalization of
the input text, it does not modify the actual word sequences. This is
why the Capitalization LM does not need to be perfectly matched to
the target recognition tasks: it just needs to have sufficient coverage
and to be close enough to provide the right capitalization pattern
for a word, given its context. As another consequence, recognition
language models trained from uncapitalized or capitalized data will
remain fairly similar.

Another path to accomplish the same result might have been to
re-recognize the recognition model training data with the Capital-
ization LM but, as indicated above, this language model is not very
accurate. Moreover, this procedure would be slower than rescoring,
and more fundamentally not all the data sources that need capitaliza-
tion contain audio (e.g. web search logs).

There are two side issues however that arise with the FST ap-
proach described in Eq. 1: OOVs and start of sentences, which we
will describe next.

3.2.1. Dealing with OOVs

Since the proposed capitalization pipeline relies on a chain of FST
compositions whose symbol tables need to match, it is constrained
by the vocabulary of the Capitalization LM: a word in an input sen-
tence that is not in the LM vocabulary will break the pipeline. This
event can be made arbitrarily infrequent by increasing the coverage
of the LM corpus, but some solution needs to be implemented for
the remaining cases.

One solution might be to collect all the words in the recognition
training corpora ahead of time, and to add them to the Capitaliza-
tion LM vocabulary list prior to training. This however introduces
dependencies that break the nice separation between the upper and
lower pipelines in Fig. 1.

Another simple solution consists in checking if any word of an
input sentence is out-of-vocabulary for the Capitalization LM, and if
so replace it with a rho matcher to pass it unchanged to the output
string, or to replace it with the unknown “<unk>” word, or even to

6750

simply delete it from the input string and insert it back in after cap-
italization (remember, the words don’t change, nor their positions).
In all cases, the effect will be to leave that word uncapitalized, which
is about as well as we can do short of venturing into more compli-
cated solutions including for example semantic parsers.

3.2.2. Dealing with Starts of Sentences

Start of sentences are a more delicate issue. The Capitalization LM
is trained from properly capitalized sentences, whose first word is
thus capitalized. Likewise, the capitalized training sentences for the
recognition language model will be capitalized at start of sentences.
Such capitalized words will contribute to n-grams with capitalization
patterns that are determined by positional capitalization, not intrinsic
capitalization. In turn, these n-grams will cause erroneous capital-
ization insertions inside sentences when used during recognition.

Conversely, if we decide to remove any positional capitalization
and force words at beginning of sentences to be lower cased, we will
introduce deletions of needed capital letters, e.g. for proper names
inside sentences. Moreover, if the client application doesn’t do any
positional capitalization, we might see a search query be recognized
as “paris France” instead of “Paris France”.

A simple solution to eliminate what amounts to positional noise
from our data consists of inserting some generic word at the begin-
ning of the sentence to capitalize, and remove it after capitalization.
This word will be erroneously capitalized, but inasmuch as it does
not break the flow of the sentence and of the LM rescoring, it will
allow the rest of the sentence to be properly capitalized. Experi-
mentally, we found that words such as “and” or simply “<unk>”
are appropriate for this task, and result in very similar capitalization
performance.

4. CAPITALIZATION LANGUAGE MODEL

4.1. Corpus

The above section described how, given a capitalized corpus, one can
train a Capitalization LM, and through some FST manipulations, use
this LM to capitalize the recognition model training sentences. The
question now is how to obtain such a corpus. Again, it is not key that
this corpus be extremely well-matched with the recognition tasks
since it is only used for capitalization, but large mismatches would
affect the FST rescoring procedure, and any training word not in the
capitalization LM won’t possibly be capitalized. For this reason, we
aimed at a broad, typed, varied corpus, and used Docjoin, a corpus
that assembles many written documents avalaible on the web.

Understandably the corpus is very large, and not always well-
formatted. We therefore applied a series of heuristics to filter the
corpus and retain clean utterances.

4.2. Corpus Cleaning

Various adhoc rules were implementd to filter the Docjoin corpus.
Since the corpus is extremely large, we aimed at a low-yield high-
precision procedure. Rejecting sentences containing non-ascii char-
acters, too many punctuation marks, too many capitalized charac-
ters, or too many character or word repetitions eliminated about 25%
of the data, and left a qualitatively much cleaner corpus. Perhaps
the most efficient filter though consisted in imposing that training
sentences be grammatically correct sentences, i.e. that they started
with an upper case, and ended with a punctuation mark such as pe-
riod, question mark, or exclamation mark. This filter alone rejected
another 50% of the corpus while strongly reducing the amount of

poorly formatted text. Quantitatively, filtering out non-sentences re-
duces the capitalization error rate (defined below) by 15% to 30%
relative, depending on the test set.

The filtered corpus was then used to train a 20M n-gram capital-
ization language model.

5. BASELINE RECOGNITION SYSTEM

The speech recognition engine used for server-based Google speech
applications is a standard, large-vocabulary, recognizer, with PLP
features and a multilayer feedforward acoustic model [5].

The language model is trained using 12 data sources extracted
from previous interactions of Google users with the speech rec-
ognizer and from a variety of typed data sources including web
searches and other typed material. Speech data consists of recogni-
tion results, not human transcriptions, and to increase the probability
that those results are the correct transcriptions, the data is filtered by
recognition confidence score. The data sources we used vary in size,
from a few million to a few billion sentences, making a total of 7 bil-
lion sentences. Individual language models are trained for each data
source. These individual models have a maximum of 2M words,
n-grams up to order 5, and they are entropy-pruned to have less
than 20M total n-grams. Then the individual language models are
Bayes-interpolated [6] using a transcribed development set that is
representative of the overall recognition traffic. Finally the resulting
language model is entropy-pruned down to a size that fits our pro-
duction targets for memory and latency. The final language model
contains a little under 25M n-grams, and the FST representation of
the LM occupies roughly 0.5GB. In this pipeline, capitalization is
an optional pre-processing step to the training of the 12 individual
source language models.

The recognition search is a Viterbi beam-search based on
FSTs [7].

5.1. Error Metrics

Capitalization accuracy can be measured in different ways. In par-
ticular, it can be included in the word error rate, in which case recog-
nizing “tokyo” for “Tokyo” would be counted as a word substitution
error, or it can be assessed separately, in which case “tokyo” would
only count as a capitalization error, not a recognition one. To bet-
ter control the effect of various modeling decisions on capitalization
performance, we preferred to keep the two metrics separate. Specif-
ically, we still measure the word error rate (WER) by comparing
down-cased recognition and transctiption word strings. Capitaliza-
tion error rate (CER) instead is computed at the character level. We
remove any character that is not upper case from the recognition hy-
pothesis and human transcriptions, and then compare the remaining
character strings with the same dynamic-programming alignment
used for WER computation. For example, if the recognition result is
“Hi Bob” and the human transcription “High top”, we compare the
strings “H B” and “H”, and count one capitalization insertion error
for “B”. This error metric has the advantage of being very intuitive
but it is quite unforgiviging: recognizing “nasa” for “NASA” results
in four errors, for a single word.

6. EXPERIMENTAL RESULTS

6.1. Capitalized Language Model Characteristics

We trained a capitalized recognition language model as described in
the previous sections, and compared it to a language model trained

6751

Test Set WER (del/ins/sub) in % CER (del/ins/sub) in %
Language model with capitalization

SEARCH 19.3 (3.8/3.8/11.7) 35.7 (27.2/4.7/3.7)
MAIL 8.1 (1.3/1.2/5.6) 26.5 (15.3/9.0/2.2)
ALL 12.5 (2.2/2.1/8.1) 33.0 (19.9/10.7/2.4

Language model without capitalization
SEARCH 19.4 (3.8/3.8/11.8) 94.4 (93.3/0.5/0.5)
MAIL 8.2 (1.3/1.3/5.6) 56.4 (54.0/1.3/1.0)
ALL 12.5 (2.2/2.1/8.2) 79.1 (76.6/2.0/0.5)

Table 1. Word Error Rate and Capitalization Error Rate with 2 com-
parable language models, with and without capitalization.

without the capitalization step. Since the language modeling training
pipeline targets a vocabulary size and model size that are compatible
with our production requirements, the two models have compara-
ble context and total numbers of parameters. Also, the training data
sources are intrinsically quite noisy (lots of typos), so OOV rates
are not obvious product-impacting metrics either. The most relevant
metric to compare the two language models remains recognition ac-
curacy, in addition to capitalization of course.

6.2. Recognition and Capitalization Accuracy

Table 1 below reports the accuracies of the capitalized and uncapi-
talized models on three respresentative data sets: a search by voice
test set, a Gmail dictation test set, and a generic test set whose distri-
bution reflects that of all of our current incoming speech traffic. The
test sets vary from 15K (Mail) to 45K (Search) utterances, and from
100K to 200K words each. All three were carefully transcribed, and
transcribers were instructed to use capitalization according to Amer-
ican English usage.

As can be seen from Table 1, recognition performance is roughly
identical whether the language model is capitalized or not. At least
for large vocabulary systems, the fear of increasing the vocabulary
size and fragmenting the training data was thus unfounded. One
would actually hope that allowing multiple pronounciations for
words that only differ by their casing, e.g. “US” vs “us”, would
make the capitalized language model more accurate. So far, we
added these subtleties sparingly, and perhaps the very slight differ-
ences between the two systems can be attributed to this slight lexical
refinement.

Capitalization performance is good, but there’s a lot left to im-
prove. The capitalization error rate (CER) is dominated by deletions,
and we will provide some analysis of these errors below. It should be
noted first however that the baseline, uncapitalized, system contains
some basic mechanism to correct the most embarassingly obvious
missing capitals, such as in the first person personal pronoun. This
explains the less than 100% capitalization deletion rate in the lower
portion of the table for the baseline system.

6.3. Error Analysis

A qualitative look at capitalization errors quickly hints at conse-
quences of recognition errors. This correlates with the observation
that capitalization errors are dominated by deletions: randomly re-
placing a word by another is more likely to replace a capitalized word
by an uncapitalized one than vice-versa. Quantitatively, sentences in
the generic “ALL” test set that have at least one misrecognized word
have a 20% (absolute) higher capitalization error rate than correctly

recognized sentences. And capitalization errors from utterances with
a recognition error account for 65% of the total number of capital-
ization errors.

More interesting perhaps are the capitalization errors made in
otherwise correctly recognized sentences. On a random sample of
error sentences that were manually labeled, the largest single cate-
gory of errors related to addresses and businesses (e.g. “Rancho Va-
lencia resort”, ”Salvation pizza Houston”) which accounts for 25%
of all capitalization errors. This points at a lack of coverage of such
entities in the capitalization corpus. Another 13% of the errorful
sentences contained song or movie titles and names of music bands
(e.g. “Silversun Pickups kissing families”). Another 31% contained
random errors, including capitalization deletions and substitutions.
Finally 31% were either ambiguous cases or human transcription er-
rors.

Our assumption at this point is that a large fraction of the ob-
served errors could be corrected by increasing the coverage of the
capitalization corpus to include more Maps and YouTube entities to
cover more locations and titles. Fewer errors relate to more subtle
distinctions such as the common “mom” vs “Mom” confusion.

7. CONCLUSION

In this paper, we explored the hypothesis that a large-vocabulary,
production-quality, language model can be trained to encode cap-
italization in its constituent n-grams. We showed that the tasked-
matched data used to train the recognition model can be capitalized
using case patterns learned from a well-formatted data corpus that
was not well matched to the target recognition tasks, thereby sepa-
rating formatting and accuracy into two independent problems. Our
experiments confirm that the capitalized recognition system main-
tains the accuracy and resource tradeoffs of the uncapitalized system,
while providing fairly accurate capitalization.

The methodology proposed in this paper can easily be general-
ized to diacritic restoration, spelling correction, and to some extent
punctuation rendering.

8. REFERENCES

[1] G. Adda, M. Adda-Decker, J-L. Gauvin, L. Lamel, “Text norm-
lization and Soeech Recognition in French”, Eurospeech 1997.

[2] SRILM, http://www.speech.sri.com/projects/srilm

[3] F. Batista, D. Caseiro, N. Mamede, I. Trancoso, “Recovering
Capitalization and Punctuation Marks for Automatic Speech
RecognitionL Case Study for Portuguese Broadcast News”,
Speech Communication, Vol 50, Issue 10, Oct. 2008, pages
847-862.

[4] A. Gravano, M. Jansche, M. Bacchiani, “Restoring Punctua-
tion and Capitalization in Transcribed Speech”, ICASSP 2009.

[8] C. Chelba and A. Acero, “Adaptation of Maximum Entropy
Capitalizer: Little Data Can Help a Lot”, EMNLP 2004.

[5] N. Jaitly, P. Nguyen, A. Senior, V. Vanhoucke, “Application of
Pretrained Deep Neural Networks to Large Vocabulary Speech
Recognition”, Interspeech 2012.

[6] C. Allauzen, M. Riley, “Bayesian Language Model Interpola-
tion for Mobile Speech Input”, Interspeech 2011.

[7] OpenFst Library, http://www.openfst.org

6752

