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ABSTRACT

In this paper we investigate techniques to combine hybrid
HMM-DNN (hidden Markov model – deep neural network)
and tandem HMM-GMM (hidden Markov model – Gaussian
mixture model) acoustic models using: (1) model averaging,
and (2) lattice combination with Minimum Bayes Risk de-
coding. We have performed experiments on the “TED Talks”
task following the protocol of the IWSLT-2012 evaluation.
Our experimental results suggest that DNN-based and GMM-
based acoustic models are complementary, with error rates
being reduced by up to 8% relative when the DNN and GMM
systems are combined at model-level in a multi-pass auto-
matic speech recognition (ASR) system. Additionally, fur-
ther gains were obtained by combining model-averaged lat-
tices with the one obtained from baseline systems.

Index Terms— deep neural networks, tandem, hybrid,
system combination, TED

1. INTRODUCTION

The automatic combination of multiple acoustic models is an
important and commonly-used technique to improve the accu-
racy of automatic speech recognition (ASR) systems. Acous-
tic models may be combined at many different levels, from the
feature to the final recognition output. Explicit combination
operates directly in model space by averaging the likelihood
scores produced by each of the particular models. Implicit
combination operates in the space of generated sentence hy-
potheses and attempts to rescore or alter recognition hypothe-
ses provided as either n-best lists or lattices.

One of the first attempts that allowed to combine multi-
ple ASR outputs was the Recogniser Output Voting Error Re-
duction (ROVER) technique [1]. This approach attempts to
combine 1-best recognition output obtained from two or more
ASR systems into word-level networks, which may then be
realigned and alternative word hypotheses at each time step
are scored using voting or confidence measures. An alterna-
tive, explicit approach employed the Minimum Bayes Risk
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(MBR) criterion to minimise the expected word error rate
with respect to the approximated hypothesis posterior distri-
bution [2]. This latter approach led to the notions of confusion
networks (CN) with consensus decoding [3] and CN combi-
nation (CNC) [4]. Both methods operate on lattices, rather
than the best hypothesis or an N-best list, and use reliable
confidence measure-based voting mechanisms.

Although different modelling techniques, feature extrac-
tion methods, and phonesets often provide some degree of
complementarity, there is no theoretical guarantee. Addition-
ally, the potential improvement from combining the given
systems is difficult to estimate in advance of conducting ex-
periments. Hence some effort has been put into incorporating
complementarity into training criteria [5, 6], including ap-
proaches such as mixtures of experts [7] and products of
experts [8].

In this paper we investigate the combination of hybrid
HMM-DNN systems with tandem HMM-GMM systems.
The tandem systems we explore combine stacked bottle-
neck features (obtained from a narrow hidden layer in feed-
forward network) [9] with posteriogram features (obtained
from neural network outputs) [10] in MLAN configuration
[11]. The hybrid HMM-DNN system uses the DNN to es-
timate posterior probabilities of context dependent HMM
states, which are transformed to scaled likelihoods and used
directly as output probabilities in the HMM system [12, 13].
An additional motivation for this work is that constructing
a context-dependent hybrid HMM-DNN system requires a
trained HMM-GMM system in order to obtain the train-
ing alignment with context-dependent phone states. Indeed
the hybrid system uses the set of context-dependent tied
states defined by the HMM-GMM system. Furthermore, it
is advantageous to perform feature space adaptation when
training a hybrid system, and again such an adaptation can be
conveniently obtained by constrained maximum likelihood
linear regression (CMLLR) transforms [14], which enable
the DNNs to be trained in a speaker-adaptive fashion.

We explore combining hybrid HMM-DNN systems with
tandem HMM-GMM systems by performing experiments on
the TED talks speech recognition task as used in the IWSLT
evaluation campaign [15]. We have investigated combina-
tions based on model averaging of likelihoods and on MBR-
based combination of lattices.
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2. RELATION TO PRIOR WORK

There were a number of studies concerning the combina-
tion of GMM-based systems and hybrid HMM system in
the 1990s. These investigations, mainly based on model
averaging, showed some success when combing context-
independent hybrid systems based on multi-layer perceptrons
(MLPs) and recurrent neural networks (RNNs). Dugast et
al. [16] combined posterior probability estimates obtained
from a time-delay neural network with the likelihoods gener-
ated by an HMM system with state emissions modelled by a
mixture of Laplacians. Similar approaches combining scaled-
likelihoods produced by a two-layer MLP and HMM-GMM
likelihoods were also investigated [17]. Hochberg et al. [18]
smoothed together the outputs from RNNs using different
features and running forward and backward in time. Seg-
mental neural networks [19] may be viewed as an example
of an implicit combination in which a phone segment-level
MLP was used to rescore an n-best list produced using a
GMM-HMM system. MLPs have also been used to estimate
state-dependent weights for mixtures of Gaussians [20].

Although there has been intense interest recently in using
DNN-based systems for ASR, there has been little reported
work on model combination using DNNs. Sainath et al. [21]
combined a strong PLP-based HMM-GMM system with a
tandem HMM-GMM system that used autoencoder bottle-
neck features, and Jaitly et al. [22] combined PLP-GMM and
hybrid systems using the SCARF framework [23].

3. MODEL COMBINATION

The experiments presented in this paper are based on the av-
eraging of acoustic model likelihoods, and on lattice combi-
nation techniques. In this section we outline these two com-
bination techniques.

3.1. Model averaging

Models could be combined in a number of ways at the frame
or state likelihood level. Likelihood scores can be combined
most simply in a frame-synchronous way. Alternatively se-
quences of frame-level likelihoods can be combined asyn-
chronously using multi-stream approaches [24]. Here we per-
form frame-synchronous combination using a linear interpo-
lation of the observation log-likelihoods under the two mod-
els:

log(p(o|qj)) = λ log
PDNN (qj |o)

P (qj)
+(1−λ) log pGMM (o|qj),

(1)
where P (q) is the probability of the tied triphone state q ob-
tained from a state-level alignment of the training data, and λ
is a scaling factor that is optimised on a development set. This
approach assumes that the acoustic models share the same de-
cision tree for the context-dependent tied states.

Combining likelihoods using (1) has limited theoretical
justification in comparison with the logarithm of the averaged
probabilities (log((p1 + p2)/2) ≥ (log p1 + log p2)/2), how-
ever, work on the combination of context-independent scaled
likelihoods indicates that (1) offers better experimental results
and does not require the likelihoods to be similarly scaled.

3.2. Lattice combination using MBR decoding

We compare the score-level combination done by model av-
eraging with hypothesis-level combination using an MBR-
based combination [25], which was shown to improve over
the more traditional ROVER [1] and CNC [4]. The MBR
combination finds the word sequence that minimises the ex-
pected word error rate across the different systems being com-
bined:

W ∗ = arg min
W

{
N∑

i=1

λi

∑
W ′∈Li

P (W ′|O;Mi) L(W,W ′)

}
,

(2)
where L(W,W ′) is the Levenshtein distance between two
word sequences, and P (W |O;Mi) is the posterior probabil-
ity of the word sequence W given the acoustic observation
sequence O as computed under the i-th modelMi. This pos-
terior probability is approximated by that computed over the
lattice Li corresponding to the i-th system:

P (W |O;Mi) ≈
P (W ) p(O|W )∑

W ′∈Li
P (W ′) p(O|W ′)

.

4. EXPERIMENTAL SETUPS

We have performed a set of experiments combining DNN-
based hybrid and tandem systems using the publicly avail-
able TED talks corpus [26] according to the ASR evaluation
protocol used in the IWSLT–2012 evaluation campaign [15].
The training data consists of 813 publicly available TED talks
published before the end of 2010. After automatic segmenta-
tion and lightly-supervised alignment 143 hours of speech re-
mained for training purposes [27]. The DNNs were trained on
131 hours of speech, the remaining 12 hours (45 talks) were
used for cross-validation. We present results on two prede-
fined test sets, referred to as dev2010 and tst2010, containing
8 and 11 talks of about 10 minutes duration, respectively.

Our HMM-GMM systems were built using the open
source Kaldi speech recognition toolkit [28], and the DNNs
code were trained with software that utilised the Theano
library [29], which allows for transparent CPU and GPU
computations. DNN training was carried out using NVIDIA
GeForce GTX 690 GPUs.

4.1. HMM-GMM System

The GMM acoustic models use 13-dimensional perceptual
linear prediction (PLP) features with first and second order
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Fig. 1. MLAN features generation used for systems G1, H2
and H3.

differential coefficients. The models have 12,000 context-
dependent tied states with around 16 Gaussians per state.
Speaker adaptive training (SAT) is done using a single con-
strained (feature-space) MLLR transform per speaker. The
SAT models are discriminatively trained using the boosted
maximum mutual information (BMMI) [30] criterion. Re-
sults for the different HMM-GMM systems can be found in
table 1 including contributions of each of the stages.

4.2. MLAN Features

Multi-Level Adaptive Networks (MLAN) [11] are a neural
network based method to exploit out-of-domain training data.
The fundamental idea, as depicted in figure 1, is that DNNs
trained on out-of-domain data produce posterior or bottleneck
features for in-domain data, and these neural network features
are combined with the acoustic (PLP) features to train a sec-
ond DNN on in-domain data. In this work we used bottleneck
features obtained from a network trained on the AMI corpus
[31] as inputs to a second network trained on the TED data.
The resultant second level MLAN posteriors benefit from out-
of-domain data and are adapted to the in-domain data. These
posteriors were then concatenated with PLPs and used in both
tandem fashion [10] to train the new GMM acoustic models
(table 1) as well as for a context-dependent DNN to use in a
hybrid HMM-DNN system (table 2).

4.3. Hybrid System

Our hybrid HMM-DNN system is similar to the one recently
proposed by Dahl et al. [13], in which a pre-trained DNN esti-

Table 1. Word error rates for the baseline HMM-GMM sys-
tems.

System WER(%)
dev2010 tst2010

ML PLP GMM 32.0 36.9
+SAT 23.5 23.0
+BMMI (G0) 21.0 20.3
ML MLAN GMM 23.4 22.2
+SAT 19.7 17.8
+BMMI (G1) 18.3 17.3

Table 2. HMM-DNN hybrid results for different features
types

Features WER(%)
dev2010 tst2010

PLP (H0) 20.0 18.9
+SAT (H1) 18.0 16.2
MLAN (H2) 19.1 17.5
+SAT (H3) 17.9 15.8

mates (scaled) likelihoods for context-dependent tied states of
an HMM system. The tied states are extracted from a corre-
sponding HMM-GMM system. Following the reported expe-
rience of Dahl et al. [13] and recommendations for gradient-
based training of deep structures [32], as well as our previous
experience with DNNs for ASR [33], we choose the network
to have six hidden layers with 2048 units in each hidden layer.

The networks are initialised from stacked restricted Boltz-
mann machines (RBMs) that are pretrained in a layerwise
fashion [34]. Finetuning was performed using stochastic gra-
dient descent optimisation. The required hyperparameters
were set to the same values as in our previous work [33],
except the initial learning rate, which was increased to 0.16.

We present the ASR results for these hybrid systems in Ta-
ble 2. We used both PLP and MLAN tandem features, and in
both cases we trained an additional speaker adaptive training
(SAT) variant, in which a constrained (feature-space) MLLR
transform obtained from an HMM-GMM system was used to
adapt the input features to the DNN. Although the term SAT
is used to describe both tandem and hybrid systems, there
is a difference: SAT for DNNs is effectively doing a cross-
adaptation, in which the CMLLR transforms are estimated
using a HMM-GMM system and applied to an HMM-DNN
system.

5. RESULTS

Before discussing our model combination results, we first dis-
cuss the baseline results, focusing on the tst2010 set to avoid
complicating the exposition. First, based on the WERs in ta-
ble 1 we can see how the application of SAT transforms in the
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Table 3. Model averaging and corresponding lattice combi-
nation results. Relative WER changes are given in parenthesis
w.r.t. the better of the two systems. λ scales hybrid systems
and is optimised on devset (GMMs are scaled by 1-λ)

Systems combined WER(%)
dev2010 tst2010

Model averaged experiments
G0 ⊕ H0, λ = .6 18.7 (-6.5) 17.3 (-8.0)
G0 ⊕ H1, λ = .7 17.8 (-2.2) 16.0 (-1.2)
G1 ⊕ H2, λ = .6 17.6 (-3.8) 16.5 (-4.6)
G1 ⊕ H3, λ = .7 17.1 (-4.5) 15.8 (0)
Lattice combination experiments
G0 ⊕ H0, λ = .6 18.0 (-10.0) 17.9 (-5.3)
G0 ⊕ H1, λ = .6 17.9 (-0.5) 17.1 (+5.5)
G1 ⊕ H2, λ = .4 18.0 (-1.6) 17.1 (-1.2)
G1 ⊕ H3, λ = .7 17.5 (-2.2) 15.6 (-1.3)

HMM-GMM system results in a very large reduction in WER,
since a sufficiently large amount of speech (∼10 minutes) is
available per speaker. For the ML PLP variant, the WER
drops from 36.9% to 23% after CMLLR adaptation. Using
MLAN features results in a much lower WER for the un-
adapted system (22.2%), which is reduced by a further 4.4%
absolute after performing SAT. Applying a CMLLR trans-
form to the HMM-DNN hybrid system also gave significant
WER reductions of 2.7% and 1.7% absolute, when trained on
PLP and MLAN features respectively. This compares well
to recently reported results on different tasks, conversational
telephone speech [35] and North American English broadcast
news transcription [21].

The first part of Table 3 contains the results of linear
combinations of likelihood scores using eq. (1). The results
indicate that the hybrid system becomes less complemen-
tary to the HMM-GMM when both were trained on features
adapted using CMLLR. This is not unexpected since the
CMLLR transform, used for the features on which the hybrid
system DNN is trained, was obtained using the HMM-GMM
system. The second part presents the same combination but
obtained at the lattice level by MBR decoding.

Operating in the hypotheses-space allows combination of
systems with different decision trees — results of which are
presented in Table 4 where we cross-combine the systems
trained on MLAN and PLP features. Finally, Table 5 shows
that model averaging and lattice combinations are comple-
mentary to each other: for example, comparing the last lines
of Table 4 and 5, we see that first combining the best MLAN
GMM system (G1) with the best MLAN hybrid system (H3)
using model averaging followed by an MBR combination
with the best PLP hybrid system gives better results than a
3-way MBR combination of the same systems. This may be
due to the fact that in the first case the MBR decoding starts
with a better set of hypotheses to choose from.

Table 4. MLAN/PLP lattice combination results.
Systems combined WER(%)

dev2010 tst2010
G1 ⊕ H0 17.9 (-2.2) 16.9 (-7.6)
G1 ⊕ H1 17.3 (-3.9) 15.8 (-2.5)
H2 ⊕ H0 18.6 (-2.1) 17.2 (-1.7)
H2 ⊕ H1 17.7 (-1.7) 16.4 (+1.2)
H3 ⊕ H0 17.7 (-1.1) 17.3 (+9.5)
H3 ⊕ H1 17.4 (-2.8) 15.6 (-1.26)
G1 ⊕ H3 ⊕ H1 17.4 15.2 (-3.8)

Table 5. Selected lattice combination results with lattices ob-
tained from model-averaged decodes (Table 3)

Systems combined WER(%)
dev2010 tst2010

G1H3 ⊕ G0H1 16.8 (-1.7) 15.0 (-5.1)
G1H3 ⊕ G1H2 17.2 (+0.6) 15.8 (0)
G1H3 ⊕ H1 16.9 (-1.2) 14.9 (-5.7)

6. CONCLUSIONS AND FUTURE WORK

In the paper we investigated model- and lattice-based system
combination techniques for HMM-DNN and HMM-GMM
systems trained using the most recent advances in both do-
mains. We showed that model-averaging HMM-GMM and
HMM-DNN systems improves the final accuracy and that
applying the same CMLLR transforms reduces the comple-
mentarity between the combined HMM-GMM and HMM-
DNN systems. We also showed that combination of model-
averaged systems with each other, or with baseline systems,
using MBR combination may bring further gains in accu-
racy. Finally, small reductions in WER could be obtained by
training DNNs on MLAN features.

A promising future direction involves the exploration of
filterbank features, which were found to be a good choice
for DNNs [36], and may prove to be more complementary
to models trained on conventional cepstral features. It is also
possible to have a hybrid HMM-DNN version of the products
of experts [37], whereby different DNNs become responsible
for different subsets of tied-states obtained from HMM-GMM
decision tree clustering.
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