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ABSTRACT

In this work we show how some concepts already known
from dynamic network decoding can be used to improve the
efficiency of WFST based decoders. First we apply the con-
cept of acoustic look-ahead to a WFST based decoder, and
then we analyze the applicability of LM state pruning, a well
motivated pruning method which is fundamental to token-
passing decoders. The structure of the composed WFST
search network makes it difficult to motivate advanced prun-
ing methods, and consequently it is difficult to achieve a
real reduction in search space. Nonetheless, we show how
LM state pruning can be applied to WFST based decoders to
improve their efficiency.

The search space can be reduced by up to 50% at equal
precision through acoustic look-ahead. Since our decoder
follows a dynamic composition approach, the advantage in
search space does not fully transfer to the RTF, which can
be reduced by around 20% through acoustic look-ahead, and
additional 5% through LM state pruning.

Index Terms— LVCSR, WFST, look-ahead, pruning

1. INTRODUCTION
Weighted finite state transducers (WFST) have become the
dominant decoding approach in large vocabulary continuous
speech recognition (LVCSR) research. While it has been
shown that advanced dynamic network decoders perform
similarly regarding runtime [1, 2], WFST based decoders
allow an unprecedented level of flexibility, due to the abstract
representation of the different knowledge sources, and due to
the separation of the decoder implementation from that of the
search network.

In WFST decoders, the n-gram language model (LM)
transducer G, the lexicon transducer L, and the context de-
pendency transducer C are composed to C ◦ L ◦ G using
standard finite-state operations to create a joint search net-
work [3] (determinization and minimization yield a relatively
compact network).

If a large LM and lexicon are used, then the static com-
position of the C ◦ L ◦G transducer can become very expen-
sive, and the resulting transducer may require large amounts
of memory. Therefore, on-the-fly composition has been pro-
posed [4], where the C ◦ L and the G transducer are created
and optimized in a preprocessing step, and then composed to
C◦L◦G on-the-fly during decoding, leading to a search strat-
egy similar to dynamic network decoding [2] but based on the
WFST terminology.

In dynamic network decoders, usually a wide range of
pruning methods is applied, some of which are just tricks re-
quired in a specific decoder implementation, others of which
allow a systematic reduction of the search space at equal pre-
cision [5]. Furthermore, acoustic look-ahead is a very effec-
tive method to improve the efficiency of dynamic network de-
coders [6].

In this work, we evaluate the effectiveness of acoustic
look-ahead in the WFST decoding architecture with on-the-
fly composition, and we use the theory of anticipated path
recombination [7] to implement LM state pruning, which is a
common pruning method in dynamic network decoders [1, 2],
but does not fit into the WFST framework at first glance.

2. DECODER
Our decoder [8] is based on the OpenFst toolkit [9] using on-
the-fly composition with weight- and label pushing [4]. The
L and C transducers are determinized and minimized, and no
further transducer operations are applied after composition.
The final C ◦ L ◦ G transducer has tied HMM input labels
and word output labels. Each input label corresponds to a
specific HMM state sequence, and the HMM state sequences
are expanded on-demand during decoding.

The search space is cascaded into active states, active arcs,
and active HMM states (each active HMM state belongs to an
active arc, each active arc belongs to an active origin state).

The decoder uses global beam pruning to focus the
search: All HMM state hypotheses with a score worse than
the best one plus a specific threshold are discarded.

The decoder applies global beam pruning at many points:
Prospectively while expanding HMM transitions, explicitly
after computing acoustic scores, and while expanding cross-
arc transitions and epsilon arcs. The beam applied at cross-
arc transitions is tighter than the beam applied within arcs, to
reduce the costs of on-the-fly composition.

2.1. Mapping into C ◦ L

Each state in the composed transducer can be associated to
one corresponding state in the C ◦ L transducer and one state
in the G transducer. The alternative epsilon sequencing fil-
ter is used for composition [4], which matches the LM back-
off arcs in G right after word labels, and avoids any back-off
matches until the next word label has been matched. Thus, a
subgraph of the C ◦ L transducer is spanned for each state in
G leading to all word labels which have a match in the spe-
cific LM context. The context-dependent subgraph of C ◦ L
is only complete for LM contexts that have a match for ev-
ery word label, which is usually only the case in the unigram
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state, which can be reached through LM back-off arcs follow-
ing any word label (usually at least a unigram probability is
available for each word in the lexicon).

The standard OpenFst on-the-fly composition algorithm
allows identifying the corresponding state in C ◦ L for each
state in the composed transducer. However a mapping from
arcs in C ◦ L ◦G to arcs in C ◦ L is usually not possible, be-
cause the arcs are filtered during composition, and thus their
indices are changed. For our LM state pruning and acous-
tic look-ahead approaches, we require to map each arc into
C ◦ L, therefore we have modified the OpenFst on-the-fly
composition algorithm to store the C ◦ L arc index into ev-
ery composed arc. The efficiency of composition is affected
only insignificantly by this modification.

3. ACOUSTIC LOOK-AHEAD

Acoustic look-ahead denotes the approximative pre-evaluation
of the acoustic model to improve the focus of beam search. In
[6] two approximations of acoustic look-ahead have been pro-
posed and compared to the perfect look-ahead: The temporal
approximation and the model approximation, both of which
can be combined to achieve about 70% of the reduction in
search space achievable through perfect acoustic look-ahead,
at negligible runtime costs.

Temporal approximation: At a specific time frame, due to
specific attributes of the training procedures and speech sig-
nals, the local acoustic emission score of an HMM state hy-
pothesis for that time frame can be considered an approxima-
tion of the expected emission scores for the next time frames.
For pruning, the emission score of each HMM state hypothe-
sis is scaled by the temporal look-ahead scale, and added to
the overall score of the hypothesis.

Model approximation: A limited set of very simple look-
ahead models are assigned to each HMM state in the search
network and trained so that they represent the acoustic emis-
sion models of the successor HMM states as closely as possi-
ble. The assignment and training happens iteratively based on
expectaction maximization with simple single-Gaussian mod-
els that are derived from the original acoustic models. For
pruning, the simplified models are evaluated on future acous-
tic observations, scaled by the model look-ahead scale, and
added to the HMM state hypothesis scores.

The advantage of the temporal approximation is that the
complex original acoustic models are used, while the advan-
tage of the model approximation is that both the models and
the acoustic observations actually correspond to the future.
Both methods can be combined, using individual scales for
each.

To apply acoustic look-ahead in our WFST based decoder,
we pre-compute the acoustic look-ahead models for model
approximation on the C ◦ L transducer equivalently to the
single-word search network used in [6]. During decoding,
we then map each arc into the C ◦ L transducer to get the
corresponding look-ahead model (see Subsection 2.1).

We incorporate the look-ahead scores at every pruning
step possible to increase the precision of the pruning (eg.
while expanding HMM transitions, after computing scores,
while expanding cross-arc transitions, and while expanding
epsilon arcs). Only model-approximated look-ahead is used
while expanding HMM transitions, because acoustic scores
for the current timeframe were not yet computed at that point.

4. LM STATE PRUNING
LM state pruning is a common pruning method in dynamic
network decoders [1, 2, 5]. There, it helps to reduce the over-
all number of different LM contexts which need to be main-
tained, and thus reduces the number of LM look-ahead tables
which need to be calculated. It also helps improving the rela-
tionship between the size of the search space and the precision
[5], and it is one of the few well-motivated pruning methods.

Consider a state hypothesis (s, h, q) in a dynamic network
decoder with LM history h, score q, and network-state s. The
state hypothesis (s, h, q) is removed if there is another state
hypothesis (s, h′, q′) on the same network state s with score
q′ better by a specific threshold.

Motivation: If two state hypotheses share a state s in the
single-word search network, then the relative probabilities of
all followup paths through the network leading to a sentence-
end can only be discriminated by the LM (the acoustic model
assigns equal probabilites to equal HMM state alignments).
The acoustic model has a much stronger influence on the over-
all hypothesis probabilities than the LM, thus a majority of
the variability that can discriminate the followup hypotheses
has fallen away. Therefore the LM state pruning threshold
can typically be much tighter than the global beam pruning
threshold without introducing additional errors.

The minimized single-word search network of dynamic
network decoders corresponds to the C ◦ L transducer in the
WFST framework, and LM histories h correspond to states
in the G transducer. Following this analogy, we can directly
transfer LM state pruning into the WFST framework. How-
ever, composition using the alternative epsilon-sequencing fil-
ter (see Subsection 2.1) invalidates the motivation of LM state
pruning: The set of acoustic followup paths through the C ◦L
transducer may be unequal for different network states cor-
responding to the same C ◦ L state, because the LM back-
off is matched only after word labels, and then different fil-
tered subgraphs of C ◦L are spanned for different LM states.
However, since the unigram back-off is reachable from ev-
ery state in G, for every C ◦ L path which is filtered away
by the epsilon-sequencing filter at a higher-order state in G,
there is an equivalent path going through the unigram state
of G which was reachable by backing-off right after the pre-
viously crossed word label. Thus, we can avoid problems by
performing LM state pruning only relative to state hypotheses
which correspond to the unigram state of G, consistently with
the theory of asymmetric path anticipated path recombination
introduced in [7].

We define the LM state pruning in the WFST framework
as follows:

The state hypothesis (s, q) is removed if there is another
state hypothesis (s′, q′) with G(s′) = Gunigram, CL(s) =
CL(s′) and q > q′ + fLM .

Where s is an HMM state in the composed network, q
is a score, Gunigram is the unigram grammar state, fLM is
the LM state pruning threshold, G(s) is the state in the G
transducer corresponding to the composed state s, and CL(s)
is the corresponding state in the C ◦ L transducer.

We expand HMM states dynamically from the arcs dur-
ing decoding, therefore we need arc-mapping (see Subsection
2.1) to map HMM states into C ◦ L.

To further improve the effectiveness of LM state pruning,
we once statically expand the C ◦ L transducer up to HMM
state level, then apply a minimization transformation to that
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HMM network, and use the generated minimizing mapping
for LM state pruning to potentially tie HMM states together
which belong to different arcs.

5. EXPERIMENTAL RESULTS
We perform our experiments on the first speaker-independent
pass of the RWTH Aachen Quaero English ASR system [10].
The lexicon is comprised of 158k words with 180k pronun-
ciations, modeled by 45 phonemes and 6 non-speech phones,
and the 4-gram LM is composed of 50M n-grams. The acous-
tic model is comprised of 4501 Gaussian mixture models with
a globally tied covariance matrix and 1M mixture densities.
The test corpus consists of 1482 segments with a duration of
3.4h and about 36k spoken words.

The acoustic scores are computed efficiently using quan-
tized features, temporal batching, and Gaussian preselection.
The Gaussian densities are clustered into 256 clusters and at
each time frame only the closest 32 clusters are considered
(batching and preselection together reduce the effort of acous-
tic scoring to approximately one third at equal error rate).

Real time factors (RTF) were measured on a 4-core AMD
Opteron 2220 machine with 2.8Ghz and 16GB of memory
(without parallelization).

5.1. LM state pruning unigram approximation
We have verified that our unigram approximation of LM state
pruning (see Section 4) does not negatively impact the effec-
tiveness of the pruning, by modifying the WFST composition
algorithm to make the unigram approximation unnecessary.

The modified composition algorithm inserts additional
epsilon LM back-off arcs in all states of the composed search
network which do not correspond to the unigram state of the
G transducer. The additional back-off arcs only marginally
affect the actual search space, but they make the reachabil-
ity of word labels in the composed WFST equivalent to the
reachability in the C ◦ L transducer, thus LM state pruning
without the unigram approximation becomes well-motivated.

However we observed no significant difference in the ef-
fectiveness of LM state pruning with the modified composi-
tion algorithm and without unigram approximation vs. LM
state pruning with unigram approximation and the standard
WFST composition algorithm, which shows that the unigram
approximation of LM state pruning is as effective as the origi-
nal LM state pruning. The additional back-off arcs inserted by
the modified composition algorithm make the decoding pro-
cess slightly less efficient due to the required expansion of
additional epsilon arcs during decoding, thus we use the stan-
dard composition algorithm for all further experiments.

5.2. Method evaluation
Figure 1 shows the relationships between WER and search
space (measured in active HMM state hypotheses per time
frame) at varied global beam pruning thresholds, using pre-
viously optimized look-ahead scales and LM state pruning
thresholds. By adding temporally approximated acoustic
look-ahead, the relationship is improved by nearly 50% for
the higher error rates, but the relationship is close to the base-
line for lower error rates. When adding acoustic look-ahead
based on the model approximation on top of the temporal ap-
proximation, the relationship is improved for the better error
rates too, and an improvement of nearly 50% is achieved on
all error rates.

LM state pruning further slightly improves the relation-
ship, but the difference is only significant for the better error
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Fig. 1. WER vs. search space.
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Fig. 2. WER vs. RTF.

rates. Generally the impact of LM state pruning on search
space is much lower than previously observed on our dynamic
network decoder [5], where LM state pruning achieved a re-
duction of 10 to 20% at equal precision. The most likely rea-
sons for the underperformance of LM state pruning on the
WFST based decoder are: 1. The backing-off recombina-
tion, which is present in the WFST-based decoder but not
in the dynamic network decoder, recombines paths with dif-
ferent LM contexts which would otherwise be affected by
LM state pruning, and 2. The C ◦ L transducer is not min-
imized regarding the number of HMM states, but regarding
network arcs, which leads to increased redundancy regard-
ing the HMM states (this redundancy can be cirvumvented by
inserting epsilon arcs, but that would lead to less efficient de-
coding and composition). We alleviate the second problem by
locally minimizing the HMM network for LM state pruning
(see Section 4), but we cannot completely compensate it.

Figure 2 shows the relationship between WER and RTF.
By adding temporally approximated acoustic look-ahead to
the baseline, the RTF can be improved by approximately 10%
at equal precision for the higher error rates. By further adding
model-approximated acoustic look-ahead, an improvement of
around 20% can be achieved relative to the baseline for most
error rates. Adding LM state pruning further improves the re-
lationship by another 5% for the better error rates. LM state
pruning is more effective regarding RTF than it is regarding
the search space, because it positively affects the dynamic
composition of the search network (see Table 2).
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Table 1. Search space statistics.

Baseline +Temporal +Model +LM state

Global beam 365 370 385 385
WER [%] 20.80 20.84 20.83 20.83

RTF 1.45 1.23 1.14 1.06
# States 584 692 636 523
# Arcs 3.5k 4.1k 3.7k 3.2k

# HMM states 18.2k 11.2k 9.4k 8.8k
# Comp. states 1.9M 1.7M 1.7M 1.5M

Table 1 shows the most important decoder statistics for
a set of decoder configurations with similar word error rates
(based on individual samples from the previous graphs).
Acoustic look-ahead increases the scores used for pruning,
thus larger beams are required to achieve similar error rates
as without acoustic look-ahead. In addition to the beam size,
the word error rate and the RTF, the table shows the number
of composed network states per segment, the average number
of active network states per time frame, the average number
of active network arcs per time frame, and the average num-
ber of active HMM states per time frame. Since our decoder
expands the HMM state sequences dynamically from arcs,
active network states and arcs induce a specific overhead.
A network arc is active if at least one of its corresponding
HMM states is active, and a network state is active if at least
one of its outgoing arcs is active. The most important factors
regarding efficiency are the number of active HMM states
and the number of composed states though (dynamic com-
position with weight pushing is very expensive when a large
vocabulary and LM are used). Adding temporal acoustic
look-ahead to the baseline significantly reduces the number
of active HMM states, reduces the number of composed net-
work states, and reduces the RTF. Interestingly, at the same
time, temporal look-ahead increases the number of active net-
work states and arcs, presumably because seemingly likely
HMM states are kept active for a longer time. Both model-
based acoustic look-ahead and LM state pruning significantly
improve all search space statistics.

Table 2 shows a profiling of the decoder at the same oper-
ating points as used for Table 1. Overall the on-the-fly com-
position of C ◦ L with G accounts for the largest individ-
ual portion with real-time costs of 0.45. Acoustic look-ahead
makes all components of the search process more efficient,
specifically it helps reducing the costs of acoustic score cal-
culation. The per-time-frame calculation of the model-based
look-ahead scores accounts to merely 0.01. LM state prun-
ing is implemented in the scorer component, where the best
scores are recorded, and in the pruning component, where the
pruning is applied. LM state pruning costs 0.02 in each, how-
ever those costs are compensated by the accelerated compo-
sition which is improved by 20% from 0.45 to 0.36. Due to
weight pushing, the composition of states which correspond
to the early parts of the C ◦ L transducer is more expensive
than other parts, because more word ends are reachable from
there, and thus the pushing algorithm needs to sum over more
word probabilities. LM state pruning shows most of its effect
in exactly this part of the search network.

6. CONCLUSIONS
We have shown that acoustic look-ahead can significantly im-
prove the efficiency of WFST based LVCSR decoders.

Table 2. Profiling.

Baseline +Temporal +Model +LM state

WER 20.80% 20.84% 20.83% 20.83%
RTF 1.45 1.23 1.14 1.06

Acoustic Scorer 0.35 0.26 0.22 0.24
Composition 0.45 0.46 0.45 0.36

Expand HMM 0.12 0.11 0.10 0.09
Expand cross-arc 0.08 0.07 0.06 0.05

Pruning 0.04 0.02 0.01 0.03
Lookahead 0.00 0.00 0.01 0.01

Temporal acoustic look-ahead can be implemented eas-
ily in any kind of decoder, while model-based acoustic look-
ahead might require some deeper changes.

For WFST decoders with a dynamically composed search
network, model-based acoustic look-ahead requires slight
changes to the composition algorithm, where a mapping of
arcs into the C ◦ L transducer needs to be preserved.

For WFST decoders with statically composed search
network the acoustic look-ahead information could be pre-
computed right on the composed graph.

While LM state pruning has a minor positive effect of
only around 5% on the search space, we have shown that
even WFST based decoders can profit from advanced prun-
ing methods. Since LM state pruning reduces the costs of the
dynamic WFST composition, the improvement of 5% fully
transfers to the RTF.

Overall the search space was reduced by up to 50% and
the RTF by up to 30% at equal precision through acoustic
look-ahead and LM state pruning.

7. RELATION TO PREVIOUS WORK
To the best of our knowledege this is the first work to transfer
acoustic look-ahead and LM state pruning to a WFST based
LVCSR decoder.

In [6] we have introduced generalized acoustic look-ahead
and have shown that it can be used to significantly improve
the efficiency of a dynamic network decoder. In this work
we show how the same techniques can be used to signifi-
cantly improve the efficiency of a WFST based decoder. Our
WFST based decoder does on-demand expansion of HMM
states from network arcs, thus there is some overhead on a
higher level than the HMM state hypothesis level, therefore
the reduction of the search space achieved through acoustic
look-ahead shows a less significant effect on the RTF in this
work than it did on the dynamic network decoder, where a 30
to 50% improvement in RTF was achieved.
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