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ABSTRACT

A missing data mask estimation method based on Gaussian-
Bernoulli restricted Boltzmann machine (GRBM) trained on
cross-correlation representation of the audio signal is pre-
sented in the study. The automatically learned features by
the GRBM are utilized in dividing the time-frequency units
of the spectrographic mask into noise and speech dominant.
The system is evaluated against two baseline mask estimation
methods in a reverberant multisource environment speech
recognition task. The proposed system is shown to provide a
performance improvement in the speech recognition accuracy
over the previous multifeature approaches.

Index Terms— Noise robust, speech recognition, mask
estimation, GRBM, deep learning

1. INTRODUCTION

Missing data methods, one of the many approaches for reduc-
ing the gap between human listeners and automatic speech
recognition (ASR) in noisy environments, are based on stud-
ies motivated by the human auditory system [1]. In miss-
ing data methods, the noise corrupted speech is divided into
reliable, speech-dominated, and unreliable, noise-dominated,
components. The unreliable components can be discarded,
as in the marginalization approach, used as an upper bound
to the missing clean speech values [2], or they can be recon-
structed by the respective clean speech estimates [2, 3].

Estimating the reliable and unreliable spectro-temporal
regions of the speech signal, i.e. mask estimation, can be
challenging in varying noise environments. Some of the pre-
vious work on the field have considered mask estimation a
binary classification problem by training machine learning
based classifiers such as Gaussian mixture models (GMMs)
[4, 5] or support vector machines (SVMs) [6] with several
acoustic features in conjunction. These multifeature ap-
proaches counteract the adverse environmental factors with
their comprehensive set of features – cues discriminating
between speech and non-speech are effective in non-speech
noisy environments [4], whereas directional cues provide
information on competing speakers [5, 7].

As an alternative to basing the multifeature approach on a
set of “design” features, a GRBM [8] can be trained to learn
the acoustical patterns for an arguably better performing set of
features. Due to the contrastive divergence algorithm [9] and
the recent advances in graphics processing units, GRBMs and
deep belief networks (DBNs) are displacing the traditional
combination of hidden Markov models and GMMs as the ba-
sis of the state of the art ASR systems. GRBMs and DBNs are
capable of learning the acoustical patterns efficiently, which
has been shown in many speech related tasks such as phone
and large vocabulary speech recognition [10, 11, 12], speech
separation [13], and likability classification [14].

Ultimately, the confrontation between design and auto-
matically learned features reduces to quantity versus quality;
the discrimination power of a single automatically learned
feature may be small but the number of them can be made
arbitrarily large, whereas a single design feature such as in-
teraural time difference (ITD) or interaural level difference
(ILD) [5, 7] may be effective alone but the overall number
of them is usually much smaller. Additionally, the multilayer
DBNs may provide higher level information on the audio sig-
nal [12], which may further improve the system performance.

In this paper, we use GRBMs to learn the cross-correlation
representation of a dual channel multisource reverberant
CHiME corpus and apply it in a missing data reconstruction-
based automatic speech recognition task. The speech recogni-
tion performance of the proposed system is evaluated against
systems based on 14 design features and on the unprocessed
channel-wise cross-correlation values.

2. METHODS

In this section, we describe the proposed method starting with
an introduction to missing data mask estimation, followed by
descriptions of GRBM, feature extraction and GRBM train-
ing, classifier, and reconstruction of missing data.

2.1. Missing data mask estimation

Missing data techniques are based on the assumption that the
spectro-temporal units of the noisy speech can be divided into
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speech and noise dominated regions [2]. Typically a set of
log-mel features Y is computed for each time-frequency (TF)
unit of the speech signal and a so called spectrographic mask
labels the feature observations as speech or noise dominated.
A TF unit Yr(τ, d) is considered reliable if Y (τ, d) ≈ S(τ, d),
where τ denotes the time frame, d the frequency channel,
and S(τ, d) the clean speech signal without corrupting noise.
Units Yu(τ, d) are considered unreliable if Y (τ, d) ≥ S(τ, d).

In this work, binary valued masks are used for labeling
and cluster-based imputation [3] (see Sec. 2.5), which has
been shown to perform well on various speech recognition
tasks, is used to reconstruct the missing values.

2.2. Gaussian-Bernoulli Restricted Boltzmann Machines

A GRBM is a neural network that models the probability den-
sity of continuous-valued data using binary latent variables.
It consists of a layer of Gaussian visible units that correspond
to components of data vectors, and a layer of binary hidden
units. Each unit is connected to all units in the other layer
(i.e. no lateral connections). It has been shown that the la-
tent variables of a learnt GRBM can be used as meaningful
unsupervised features (see, e.g., [10, 15]).

The energy given by a GRBM to each state of visible units
vi and hidden units hj is defined as

E(v,h | θ) =
nv∑
i=1

(vi − bi)2

2σ2
i

−
nv∑
i=1

nh∑
j=1

wijhj
vi
σ2
i

−
nh∑
j=1

cjhj ,

where nv and nh are the numbers of hidden and visible units,
and the parameters θ include weights wij connecting the visi-
ble and hidden units, the standard deviation σi associated with
a Gaussian visible unit vi, and biases bi and cj for each unit
[16]. Based on it, one can define a Boltzmann distribution by
p(v,h | θ) = 1

Z(θ) exp {−E(v,h | θ)} .
Due to the bipartite structure, the visible units given the

the hidden units are conditionally independent, and the prob-
ability of each visible unit is

p(vi = v|h) = N
(
v | bi +

∑
j

hjwij , σ
2
i

)
,

where N (· | µ, σ2) denotes the Gaussian p.d.f. with mean µ
and variance σ2. Similarly, the hidden units are conditionally
independent, and their probabilities are given by

p(hj = 1|v) = sigmoid
(
cj +

∑
i

wij
vi
σ2
i

)
,

which makes it simple to compute the activations of features
learned by the GRBM for further use.

Learning parameters of a GRBM is commonly done by
maximizing the log-likelihood function with a stochastic gra-
dient. Recently in [17], the enhanced gradient was proposed

and shown to outperform the conventional gradient update di-
rection. In the enhanced gradient, each weight parameter wij
is updated by

wij ← wij + η [Covd (vi, hj)− Covm (vi, hj)] , (1)

where Covp(vi, hj) is a covariance between vi and hj un-
der distribution p, and d and m denote the data distribution
p(h | v,θ)D(v) and the model distribution p(v,h | θ), re-
spectively. Learning rate η can be automatically adjusted by
the adaptive learning rate proposed in [16, 17].

In [18], it was shown that a GRBM can learn more dis-
criminative filters when the binary hidden units were replaced
by the noisy rectified linear units (NReLU). When NReLU
hidden units are used, the approximate mean activation of the
hidden unit becomes

hj = max
(
0, aj

)
, (2)

where aj =
∑
i wij

vi
σ2
i
+ cj is the input to the jth hidden unit.

2.3. Feature Extraction and GRBM training

In this work, cross-correlation vectors from bandpass filtered
speech signals were used as input to the GRBM to generate a
set of features, according to the following description.

First, the left-ear xl(n) and right-ear xr(n) speech sig-
nals, where n denotes the sample number, were filtered into
21 bandpass signals Xl(n, d) and Xr(n, d), respectively,
where d is the frequency channel. The center frequencies
between 171 Hz and 7097 Hz of the bandpass filters were
designed to match the centers of the triangular filters used in
conventional audio-MFCC conversion.

Second, the cross-correlation values between windowed
(i.e. framed) bandpass filtered signals, starting from sample n,
wl(n, d) = [Xl(n, d), . . . , Xl(n+N−1, d)] andwr(n, d) =
[Xr(n, d), . . . , Xr(n + N − 1, d)] with lags l ranging from
−50 to 49 are computed as follows

R(n, l, d)=


N−l−1∑
t=0

wl(t+l, n, d)wr(t, n, d)
∗ l≥0

R∗(n,−l, d) l<0

, (3)

whereN = 256 denotes the length of the rectangular window
and []∗ the complex conjugate. The cross-correlation vector
for a frame starting at sample n on channel d is obtained by

xcorr(n, d) = [R(n,−50, d), . . . , R(n, 49, d)]. (4)

A single GRBM with 50 hidden units was trained with
20,000 coefficient normalized sample vectors in 2000 epochs
and a mini-batch size of 64. Initially, the number of hidden
units nh was varied from 25 to 150 at 25 unit intervals and in
small scale testing, 50 units was found optimal. The sample
vectors, xcorr(n, d) with random n and d values, were arbi-
trarily selected from the CHiME development set utterances,
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described in Section 3.1, in a way that the training corpus con-
tained approximately equal amount of data from all the fre-
quency channels and signal-to-noise ratios (SNRs). NReLU
hidden units, CD with the enhanced gradient and adaptive
learning rate were used. A single σ was shared and learned
for all visible units.

In evaluation, the input vectors xcorr(n, d) to the GRBM
were computed by converting the bandpass filtered and cross-
correlated speech signals into a series of 256 samples long
frames with consecutive frames overlapping by 128 samples.

2.4. Classifier

For classifying the TF units into reliable and unreliable, sep-
arate SVMs with radial basis function (RBF) kernels were
trained for each frequency channel d. Oracle masks were used
as targets, while the mean hidden activations of the GRBM
given in Eq. (2) were taken as input features. The oracle
masks were constructed using the noisy and clean CHiME
development data to compute the exact SNR of each TF unit;
only the units with SNR over 0 dB were labeled reliable.
For each SVM-based system, a single RBF kernel width γ
was used. γ values of 2.0 were found optimal for both the
baseline mask estimation system (BME+SVM) and for the
system taking the xcorr(n, d) vectors directly as SVM in-
put (XCOR+SVM). For the proposed GRBM mask estima-
tion system (GME+SVM), the optimal γ value was 2.5. The
widths were tuned by using the features computed from a set
of 200 randomly selected utterances from all the SNRs of the
CHiME development set.

In evaluation, TF regions that contained less than 20 con-
nected reliable elements were removed from the masks.

2.5. Reconstruction of missing data

In this work, cluster-based imputation (CBI) is used to recon-
struct the missing data. In CBI, a GMM is created to represent
the distribution of feature vectors of clean speech. The model
is used to fill the missing values of the observed feature vector
with the most probable values. CBI assumes that the reliable
components of the observation vector are the real values of
a clean speech feature vector and the unreliable components
represent an upper bound to the clean speech estimate; this is
derived from the additive noise assumption which states that
the energy of a signal with additive noise is always higher
than the energy of a clean signal. A more detailed description
of CBI can be found in [3] and [19].

The missing feature components were reconstructed in
21-dimensional log-compressed mel-spectral domain and the
features were processed in 5-frame windows with a window
shift of one frame as described in [20]. 1,500 randomly se-
lected utterances from the CHiME training set were used to
train a 13-component clean speech GMM with 105-variate
component densities and full covariance matrices.

3. EXPERIMENTS

3.1. Data

Here, we use CHiME challenge data [21], where spoken com-
mands are recognized from recordings made in a noisy living
room using a binaural dummy head. Target speaker, repre-
sented by the binaural impulse responses of the dummy head,
was in a fixed 2 meter in front position relative to the head.
The data set is divided into training, development and evalua-
tion sets. The training set consists of 17,000 utterances of re-
verberated but noise-free speech. The development and eval-
uations sets consist of 600 shared speaker utterances mixed
with 6 different SNRs (from −6 to 9 dB at 3 dB intervals)
giving 3,600 utterances in total.

3.2. Speech recognition system

The baseline system (BL) used in this work is a hidden
Markov model (HMM) based large vocabulary continuous
speech recognizer (LVCSR). The acoustic models of the BL
system are speaker independent state-tied triphones. The tri-
phone segmentations of the CHiME training data were gener-
ated by an LVCSR trained on the WSJ British English corpus
[22]. The HMM states are modeled with at most 100 Gaus-
sians (with diagonal covariance matrices) and their durations
are modeled with gamma distributions. The speech signal
is represented as frames of 12 MFCC and a frame power
feature together with their first- and second-order derivatives.
Cepstral mean subtraction and maximum likelihood linear
transformation are also applied. A language model based on
no-backoff bigrams with uniform frequencies for all valid
bigrams is used.

The performances of the CHiME challenge baseline sys-
tem (CBL) and a baseline mask estimation system based on
14 design features [5] and an SVM classifier (BME+SVM)
are also presented in the current study. CBL and BL systems
differ in that CBL is trained speaker dependently and whole-
word HMMs are used.

For comparison, results of the BME system coupled with
a GMM classifier (BME+GMM), trained with nine times
more data than the SVM classifiers applied here, are pre-
sented from our previous paper [5]. The classifier of the
BME+SVM system was trained with the 14 design features
computed from the same set of 200 randomly selected utter-
ances used to train the other SVM classifiers. The acoustic
features used for mask estimation in the BME systems in-
cludes modulation-filtered spectrogram, mean-to-peak-ratio
and gradient of the temporal envelope, harmonic and inhar-
monic energies, noise estimates from long-term inharmonic
energy and channel difference, noise gain, spectral flatness,
subband energy to subband noise floor ratio, ITD, ILD, peak
ITD and interaural coherence.
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Table 1. Keyword accuracy rates of CHiME baseline (CBL)
system, our baseline system (BL), baseline mask estima-
tion methods based on a 14-component design feature set
with GMM (BME+GMM) and SVM (BME+SVM) clas-
sifiers, mask estimation method based on direct use of
cross-correlation representation (XCOR+SVM), and the pro-
posed GRBM mask estimation system (GME+SVM) for the
CHiME development and evaluation sets.

Development set
9 dB 6 dB 3 dB 0 dB -3 dB -6 dB Avg.

CBL 83.1 73.8 64.0 49.1 36.8 31.1 56.3
BL 83.3 80.0 69.8 55.2 46.0 40.6 62.5
BME + GMM 88.6 85.3 78.1 68.6 60.6 55.1 72.7
BME + SVM 89.7 87.4 78.7 67.7 58.3 53.6 72.5
XCOR + SVM 89.1 87.7 80.6 71.8 63.5 58.2 75.2
GME + SVM 90.0 87.1 82.2 73.1 64.1 59.4 76.0

Evaluation set
CBL 82.5 75.0 62.9 49.5 35.4 30.3 55.9
BL 86.3 78.3 68.5 53.9 44.3 41.9 62.2
BME + GMM 90.3 84.3 76.9 68.2 58.2 56.3 72.3
BME + SVM 91.0 85.3 79.4 68.8 56.2 53.7 72.4
XCOR + SVM 90.5 86.1 80.0 69.2 57.4 55.8 73.1
GME + SVM 90.7 85.8 81.0 69.8 61.4 58.9 74.6

Table 2. Statistical significances of pairwise system compar-
isons of the evaluation set presented in Table 1. “+” denotes
a statistically significant and “-” a non-significant difference.

Pair 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB Avg.
BME+GMM - BME+SVM - - + - - + -
BME+GMM - GME+SVM - - + - + - +
BME+GMM - XCOR+SVM - - - - - - +
BME+SVM - XCOR+SVM + - - - - - +
BME+SVM - GME+SVM - - - - + + +
XCOR+SVM - GME+SVM - - - - + + +

3.3. Results

The keyword accuracies of the systems are gathered in Ta-
ble 1. The highest scores on each evaluation set SNR is shown
in bold type. On evaluation set, the lowest accuracy rates at
every SNR is obtained by CBL (55.9% on average) followed
by BL (62.2% on average). BME+GMM and BME+SVM
offer similar average performance (72.3% and 72.4%, respec-
tively) but BME+GMM achieves higher accuracy rates in be-
low zero SNR cases, whereas BME+SVM outperforms the
BME+GMM at the higher SNR cases. The highest score at
9 dB is obtained by BME+SVM (91.0%). XCOR+SVM ex-
ceeds the accuracy rates of both BME systems on average
(73.1%) and achieves the highest score on 6 dB case (86.1%).
The proposed GME+SVM is the best performing system on
average (74.6%) and at SNRs from 3 dB to −6 dB (81.0%,
69.8%, 58.9%, 74.6%, respectively).

Statistical significance of the keyword accuracy difference
between each system pair on the evaluation set was computed
by the Wilcoxon signed-rank test with a 95% confidence level
and the results of the analysis are presented in Table 2.

4. DISCUSSION

We have presented a mask estimation method based on auto-
matic feature extraction from cross-correlation representation
of binaural speech signal using a GRBM and an SVM classi-
fier (GME+SVM). The proposed method is able to learn fea-
tures exceeding the performance of advanced design features.

In some of the previous studies, the common approach
for time-frequency unit classification has been to develop
descriptive heuristic measures, or design features, some of
which are processed through a rather complex model [4, 5].
However, relevant information may be lost when data is de-
scribed with just a few features. With the help of modern
machine learning methods such as GRBM feature extraction
coupled with an SVM classifier, we can overcome the prob-
lem by using input signals in a less refined format. Even
without GRBM feature extraction, we achieved better results
with SVM classifier utilizing raw cross-correlation data as in-
put than with the design features. Similarly, a recent study by
Wang et al. [23] suggested combining a number of standard
ASR features that were less processed than design features
for missing data mask estimation.

Initially, two alternative approaches were also considered
for the feature extraction. First, learning the discriminating
patterns directly from the noisy signal provided only a small
improvement over the BL system in the current task. Second,
making the net “deeper” showed no improvement in perfor-
mance over the proposed method. These findings suggest that
there may be room for an improvement in GRBM training al-
gorithms. The next step could also be to investigate whether
GRBMs were useful in reconstructing the missing data.

The recent work by Wang and Wang [13] boosted speech
separation by modeling temporal dynamics with DBNs on
monaural audio signal, and the work by Dahl et al. [11]
and Hinton et al. [12] successfully adapted DBNs on various
LVCSR tasks. Inspired by the recent advances in combining
neural networks and ASR, we have continued our previous
study applying multiple design features to missing data mask
estimation [5] by using automatically generated features tak-
ing advantage of the modeling capabilities of GRBMs.
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(Palomäki), and 251170 Finnish Centre of Excellence Pro-
gram (2012-2017).

6732



6. REFERENCES

[1] M. Cooke, P. Green, and M. Crawford, “Handling miss-
ing data in speech recognition,” in Proc. ICSLP, Yoko-
hama, Japan, September 1994, pp. 1555–1558.

[2] M. Cooke, P. Green, L. Josifovski, and A. Vizinho, “Ro-
bust automatic speech recognition with missing and un-
reliable acoustic data,” Speech Communication, vol. 34,
no. 3, pp. 267–285, 2001.

[3] B. Raj, M. Seltzer, and R. M. Stern, “Reconstruction of
missing features for robust speech recognition,” Speech
Communication, vol. 43, no. 4, pp. 275–296, 2004.

[4] M. Seltzer, B. Raj, and R. M. Stern, “A Bayesian classi-
fier for spectrographic mask estimation for missing fea-
ture speech recognition,” Speech Communication, vol.
43, no. 4, pp. 379–393, 2004.

[5] S. Keronen, H. Kallasjoki, U. Remes, G. J. Brown, J. F.
Gemmeke, and K. J. Palomäki, “Mask estimation and
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