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ABSTRACT

Recent deep neural network systems for large vocabulary speech
recognition are trained with minibatch stochastic gradient descent
but use a variety of learning rate scheduling schemes. We investigate
several of these schemes, particularly AdaGrad. Based on our analy-
sis of its limitations, we propose a new variant ‘AdaDec’ that decou-
ples long-term learning-rate scheduling from per-parameter learning
rate variation. AdaDec was found to result in higher frame accu-
racies than other methods. Overall, careful choice of learning rate
schemes leads to faster convergence and lower word error rates.

Index Terms— Deep neural networks, large vocabulary speech
recognition, Voice Search, learning rate, AdaGrad, AdaDec.

1. INTRODUCTION

The training of neural networks for speech recognition dates back
to the 1980s but has recently enjoyed a resurgence as several groups
[1, 2] have demonstrated striking performance improvements rela-
tive to previous state-of-the-art Gaussian mixture model (GMM) sys-
tems for large vocabulary speech recognition. Across these systems
the fundamental architecture is the same — a network consisting of
several hidden layers [ of neurons 7 whose activations h;(l) are a
nonlinear function of a linear combination of the activations, h; (I —
1), of the previous layer, I — 1: h;(l) = o (Z] wijh;(l — 1)),
where ¢ is a sigmoid function and the final layer uses a softmax [3]
to estimate the posterior probability of each speech state. These
probabilities are used in a Hidden Markov Model (HMM) speech
recognizer to find a text transcription of speech.

In the next section we outline stochastic gradient descent and
describe the methods used to determine the learning rate, including
the new “AdaDec” variant. In the following section we describe our
speech recognition task and experimental set-up. In the subsequent
sections we present our experiments into learning rate scheduling
and finish with conclusions.

2. STOCHASTIC GRADIENT DESCENT

Gradient descent learning algorithms attempt to minimize the loss
L of some function approximator by adapting the parameters {w;; }
with small increments proportional to an estimate of the gradient
gij = %. The constant of proportionality is termed the learning
rate, 7. Algorithms may estimate the gradient on a large dataset
(batch), or on a single example (Stochastic Gradient Descent: SGD).
While the gradients from SGD are by their nature noisy, SGD has
been shown to be effective for a variety of problems. In this paper we

focus on minibatch SGD where an average gradient is estimated on a
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small sample of 7 examples called a minibatch. So, after presenting
t frames of data:

wii(t) = wij(t —7) —ngi; (t) (€3]
T—1

9ii(t) = % > gut—1t). 2
/=0

7 = 200 for all the experiments described in this paper. There
is much current research into second order optimization methods [4,
5, 6] for neural networks, but the majority of work still uses the fast,
simple stochastic gradient descent algorithm, and we focus on this
algorithm here. Momentum can improve convergence, particularly
later in training. Here momentum was set to 0.9 throughout all the
experiments.

2.1. Learning rate scheduling

It is well known that reducing the step size is essential for proving
convergence of SGD [12] and helps in practical implementations of
SGD. A good schedule that changes the learning rate over time can
result in significantly faster convergence and convergence to a better
minimum than can be achieved without. Initial large steps enable a
rapid increase in the objective function but later on smaller steps are
needed to descend into finer features of the loss landscape. While
several groups [2, 7, 8, 9, 10] have adopted a similar approach to
training speech models, we find that each has taken a different ap-
proach to learning rate scheduling. There have also been attempts to
automate the setting of learning rates [11]. In our work we explored
the following different methods of learning rate scheduling:

e Predetermined piecewise constant learning rate. This method
has been used in the successful training of deep networks for
speech [13, 10] but clearly has limitations in that it is difficult
to know when to change the learning rate and to what value.

e Exponential Scheduling: We have also explored exponential
scheduling where the learning rate decays as:

n(t) = n(0)x 107" 3)

e Power Scheduling: Bottou [14] follows Xu [15] in using a
decaying learning rate of the form:

n@) = n0)A+t/r)"° 4)

Where c is a “problem independent constant” (Bottou uses 1
for SGD and 0.75 for Averaged SGD).

e Performance Scheduling: A further option that has long been
used in the neural network community [16, 7] is to base
parameter schedules on some objective measure of perfor-
mance, e.g. reducing the learning rate when smoothed frame
accuracy or cross-entropy does not improve.
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e AdaGrad [17] is an alternative algorithm for managing the
learning rate on a per-parameter basis, thus determining a
long-term decay and a per-parameter variation akin to that
of second-order-methods. In this case the learning rate 7;; (¢)
for each parameter, w;; is decayed according to the sum of
the squares of the gradients:

O — C — 5)
K+, 0i5(1)°
Following [8] we add an initialization constant K to en-
sure that the learning rate is bounded and in practice choose
K = 1to ensure that AdaGrad decreases the learning rate. In
that work, AdaGrad of this form has been found to improve
convergence and stability in distributed SGD.

e AdaDec: We propose a variant of AdaGrad with a limited
memory wherein we decay the sum of the squares of the gra-
dients over time to make the learning rate dependent only on
the recent history. Naturally this decaying sum will not con-
tinue to increase in the same way as the AdaGrad denomina-
tor will, so we also multiply by a global learning rate from
one of the schedules above, which allows us to control the
long-term decay of the learning rate while still making the
learning rate of each parameter depend on the recent history
of the gradient for that parameter.

n(t)
() = 6
7]]() K+Gij(t) (6)
1 T—1 ,
Gi(t) = WGij(t—T)Jr;Z%(t—tf @
t/'=0

with n(t) given by the power scheduling equation 4. v =
0.999 was used here.

e In RProp [18] and the extended family of algorithms includ-
ing iRProp+/- [19] each element of the gradient has a sepa-
rate learning rate which is adjusted according to the sign of
the gradients. If the sign is consistent between updates then
the step size is increased, but if the sign changes, the step size
is decreased. RProp is sensitive to changes in the gradient be-
tween batches, so is unsuited to minibatch SGD, though it has
been shown to work well for batches 1000 times larger than
those used for SGD [20]. We tried without success to adapt
it to work with smaller sample sizes so present no results for
RProp or its variants.

3. VOICE SEARCH TASK

Google Search by Voice is a service available on several mobile
phone platforms which allows the user to conduct a Google search
by speaking a query. Google Voice Input Method Editor (IME) al-
lows the user to enter text on an Android phone by speaking. Both
systems are implemented “in the cloud”, falling-back to an on-device
recognizer for IME when there is no network connection.

3.1. Data

For our experiments we trained speech recognition systems on 3 mil-
lion anonymized and manually transcribed utterances taken from a
mix of live VoiceSearch / Voice IME traffic and test on a similar set
of 27,000 utterances. The speech data is represented as 25ms frames
of 40 dimensional log filterbank energies calculated every 10ms. The
entire training set is 2750 hours or 1 billion frames from which we

hold out a 200,000 frame development set for frame accuracy evalu-
ation.

A window of consecutive frames is provided to the network as
input. Deep networks are able to exploit higher dimensionality data
and thus longer windows than GMMs. We limit the number of future
frames to 5 since increasing the number of future frames increases
the latency, which is of critical concern for our real-time applica-
tion. We take 10 frames of past acoustic context to keep the total
number of parameters low, so the network receives features from 16
consecutive frames, i.e. 175ms of waveform, at each frame.

3.2. Evaluation

The word error rate (WER) is a good measure of the performance of
a dictation system, and a reasonable approximation of the success of
a voice search system (which may return useful results despite tran-
scription errors). We evaluate WERS in this paper and our goal is to
achieve the lowest WER for our task. However, the networks trained
here optimize a frame-level cross entropy error measure which is not
directly correlated with WER. For simplicity of comparison of net-
works during training we present the Frame Accuracy which is the
proportion of the development set frames which are correctly classi-
fied by the network. This is found to behave similarly to the cross
entropy. The frame classifcation involves no sequence level informa-
tion. It is difficult to compare across systems with different numbers
of outputs or indeed across different datasets, since the results here
are dominated by the three silence states which contribute 30% of
the frames in the development set. Unfortunately the initial conver-
gence rate for a given scheme or experiment does not necessarily
indicate the final converged frame accuracy, the time taken to reach
convergence, nor the final WER. Where possible we have allowed
networks to continue training until frame accuracies have levelled
off, or where frame accuracy is clearly not going to exceed that of
another method within a reasonable time We show experiments on
networks trained for up to 20 epochs.

3.3. GPU Trainer

The networks in this paper are trained using a Graphics Process-
ing Unit (GPU)-based training system [10] using CUBLAS through
the CUDAMat library [21], extended with many custom kernels.
Each network is trained on a single GPU (mostly NVIDIA GeForce
GTX580) and we rely on the GPU'’s fast parallel floating point op-
erations, particularly matrix multiplication, for fast training, with
no CPU-GPU transfers except to load training data and save final
trained network parameters. The system can train the networks de-
scribed here at about 35,000 frames per second, or three epochs/day.

3.4. Deep neural network system

The networks used for these experiments all have 1.6 million pa-
rameters: an input window of 10 past + 1 current + 5 future 40-
dimensional frames, four hidden layers of 480 sigmoid units and
1000 softmax outputs. This configuration is chosen to be suffi-
ciently small for inference and large vocabulary speech decoding to
run faster than real time on a modern smartphone, based on exten-
sive previous work to optimize evaluation speed for both server and
embedded implementations, by exploiting 8-bit quantization, SIMD
instructions, batching and lazy evaluation [22]. The neural networks
are randomly initialized and trained by minibatch stochastic gradi-
ent descent to discriminate between the state labels, minimizing a
cross-entropy criterion.

Initial forced alignments of the data came from a 14247 state
Gaussian Mixture model with 616,335 Gaussians trained from
scratch on the data. This baseline model achieved 15.0% WER
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Fig. 1: Frame accuracy and learning rate against number of train-
ing frames for a constant learning rate and Performance, Power and
Exponential scheduling.

on the test set. A large (68M parameter) deep network model was
trained on this data, and achieved 10.7% WER. This was then used
to create a new alignment. The context dependency trees (rooted
in 126 context independent states) were pruned back according to a
maximum likelihood criterion, until there were 1000 CD states. The
large network’s alignment was then relabelled to the smaller state
inventory and used to train the small networks shown in this work,
resulting in more accurate alignments than starting from a system
with only 1000 states. Realigning gave faster convergence in terms
of both frame accuracy and WER.

4. EXPERIMENTS

Figure 1 shows a comparison between the basic global learning rate
scheduling schemes, comparing a constant learning rate (n = 0.04)
with power scheduling (n(0) = 0.08,r = 250,000, 000) and per-
formance scheduling, using the optimal parameters found for each
scheme in other experiments. In Performance Scheduling we multi-
plied the learning rate by a decay rate (0.95) if the frame accuracy
did not increase within a window of F evaluations (£ = 50 with
evaluations every 1,000,000 frames) and found that despite initial
slow convergence this eventually resulted in high frame accuracies.
The curve tends to flattens out completely as learning rates become
so small that performance does not change — gains in accuracy be-
come rarer as the curve flattens out, triggering more learning rate
reductions. Initially the learning rate does not change since the ac-
curacy is increasing steeply. Unfortunately Performance Scheduling
has several hyper-parameters (the decay rate and the window size, as
well as the frequency of the evaluations) as well as the tendency to
decay the learning rate too much at the end, and to not change it at all
at the beginning. Based on the behaviour of Power and Performance
scheduling, and observing the opposite curvatures of the learning
rate curves for the two schemes, shown in Figure 1, we tried Expo-
nential scheduling — a straight line in the figure, characterized by
a single hyperparameter. Here » = 6.6 x 10°. Ultimately a higher
frame accuracy was achieved than with any of the other schemes,
though convergence took significantly longer.

4.1. AdaGrad

In our experiments, shown in Figure 2, we found that beginning
training with AdaGrad (“AdaGrad 0B”) led to poor convergence. In-
creasing the learning rate a factor of 3-5 improved things, but not
close to the performance of Power Scheduling. Starting AdaGrad
from a partially-trained model produced a large initial increase in

55
545 F
>
8 54 f
g
Q
<
o 535
v : Power schedule
* 53 F AdaGrad 0B
AdaGrad 1B
Adagrad 2B -
525 F AdaGrad 3B |
' AdaGrad 3B 3x e
AdaGrad 4B - -
52 . . Step change 0.25x 3B ----
0 2 4 6 8 10 12 14

Training frames x 1e9

Fig. 2: Frame accuracy for AdaGrad, from random initialization
(OB) or initializing from the power scheduling model after 1, 2, 3,
and 4 billion frames. After an initial step, performance flattens off
and is soon surpassed by Power Scheduling. Similar behaviour is
seen without AdaGrad if the learning rate is divided by four. At a
given number of frames, the most recent warm start performs best.
Increasing the learning rate helps with random initialization, but
hurts (“AdaGrad 3B 3x” curve) when warm-starting.

frame accuracy. However the frame accuracy of PowerScheduling
increases at a faster rate, and as shown in Figure 2, in all circum-
stances it soon surpasses the AdaGrad training. Increasing the learn-
ing rate reduced the initial performance step, and did not change the
slope of the curve.

The sharp increase in frame accuracy is partly attributable to the
parameter-specific learning rates, but we suggest that it is principally
due to a rapid decrease in the learning rate for all the parameters. As
shown in the figure, a step change in the global learning rate pro-
duces a similar step change and reduced slope for the frame accu-
racy curve. Figure 3a shows the percentiles of the learning rate for
one layer of the network compared to the power scheduling. The
median learning rate from AdaGrad starts out 10x lower than the
global 7 but soon falls to 30x lower. Increasing the learning rate to
compensate merely reduced the initial gain from AdaGrad. We note
that there is a wide separation (265X ) between the maximum and
minimum learning rate, but only a small separation (around 2.7X)
between the 10th and 90th percentiles. Increasing the learning rate to
compensate when warm-starting AdaGrad reduced the step change
but did not improve the slope of the curve (Figure 2).

Another reason that we can propose for AdaGrad’s poor perfor-
mance, particularly when used at the start of training, is that it has an
unlimited memory. The early history of a gradient sequence impacts
the learning rate long after, when the gradient behaviour may be very
different. A further drawback of AdaGrad is the extra computation:
AdaGrad reduces the frame throughput by about %

4.2. AdaDec

To address these problems we propose a variant — AdaDec, de-
scribed in Equations 6 and 7 in which we decouple the per-parameter
learning rate estimation from the time-dependent learning rate de-
cay. Figure 3b shows the change in the learning rate multiplier from
AdaDec over time, with a smaller range (50%) from maximum to
minimum, but a similar range for the middle 80% of learning rates,
and a relatively stable median. We can apply AdaDec with the global
learning rate schedule of our choice. As with AdaGrad, we initially
compared to Power Scheduling, with frame accuracies shown in Fig-
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Fig. 3: Percentiles of the learning rates for the penultimate layer
against number of training frames, initializing at 1 billion frames. (a)
AdaGrad compared to Power Scheduling. The maximum learning
rate decreases rapidly then roughly parallels the Power Scheduling
curve a factor of 4.4 lower. The dynamic range is about 265, (2.7 for
the middle 80%). (b) AdaDec, excluding the global scaling factor.
(Max~ 1). The median falls from 0.31 to 0.25. The dynamic range
of the learning rates is around 50, with a similar spread to AdaGrad
(2.6) for the middle 80%.

ure 4. There is the same immediate step change in the frame accu-
racy as seen with AdaGrad, but the frame accuracy increases more
rapidly, albeit still being caught by the Power Scheduling frame ac-
curacy. Again it seems better to warm-start later rather than sooner.
When the learning rate is increased, the step change is smaller but
AdaDec frame accuracies rise and exceed the Power Scheduling for
the scope of the experiment.
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Fig. 4: Frame accuracies comparing AdaGrad with AdaDec with the
same initial global learning rate, starting at each of 1, 2, 3, 4 billion
frames. Power Scheduling is shown for comparison. Increasing the
learning rate by a factor of 3 when starting AdaDec (black dots)
results in sustained outperformance of PowerScheduling.

When we apply AdaDec to an exponential schedule, we find the
same step improvement and, when the learning rate is increased, a
sustained improvement relative to the exponential schedule. Earlier
in training, where the gap in frame accuracies is large, AdaDec re-
sults in improved WER, however, where the gap is small we did not
measure any improvement, and in fact measured by time, rather than
number of frames processed, AdaDec reached the optimum WER
later than exponential scheduling. To this end we propose a further
improvement to AdaDec, which is to only accumulate the sum of
squared gradients every N batches and to only recompute the learn-
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Fig. 5: Comparison of frame accuracies against training frames for
Power Scheduling, Performance scheduling, Exponential scheduling
and Exponential scheduling with a late AdaDec warm start, with and
without model averaging. The WERs for each of the global schemes
are shown. AdaDec achieves the same 14.3% WER, slightly later
than the simple Exponential model.

ing rates every M batches. With N = 3, M = 9 the frame rate drop
from applying AdaGrad is only 13%.

As with AdaGrad, we find that at any given training frame, the
most recently started AdaDec model achieves the highest frame ac-
curacy, so Figure 5 also shows the result of starting AdaDec at 13&
14 billion frames. Finally we apply a model averaging [23] with a
running average [15] which increases the frame accuracy slightly but
has had no measurable effect on the final WER.

5. CONCLUSIONS

Learning rate scheduling is essential to achieving optimal WER from
deep neural networks. Careful choice of the learning rate scheduling
algorithm and the hyperparameters can result in dramatically dif-
ferent training times for current network trainers using minibatch
stochastic gradient descent, and different WER, particularly when
training with a limited computation budget. The space of parameter
schedules is infinite, and many previous studies have explored pa-
rameter scheduling for other problems (SGD, ASGD, convex prob-
lems etc.) For our task, we find the self-regulating performance
scheduling to be effective, but more complex and with more hyper-
parameters than the exponential scheduling that ultimately achieves
the best performance. In particular we have studied AdaGrad and
found no practical improvement. Based on our findings we have
designed AdaDec, an alternative which is shown to produce faster
convergence to higher frame accuracies for our task. Ultimately our
study has led to a 0.2% reduction in the WER for the system inves-
tigated below the previous best.
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