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ABSTRACT 
 
Micro-modulation components such as the formant frequencies are 
very important characteristics of spoken speech that have allowed 
great performance improvements in small-vocabulary ASR tasks. 
Yet they have limited use in large vocabulary ASR applications.  
To enable the successful application, in real-life tasks, of these 
frequency measures, we investigate their combination with 
traditional features (MFCC’s and PLP’s) by linear (e.g. HDA), and 
non-linear (bottleneck MLP) feature transforms. Our experiments 
show that such integration, using non-linear MLP-based 
transforms, of micro-modulation and cepstral features greatly 
improves the ASR with respect to the cepstral features alone. We 
have applied this novel feature extraction scheme onto two very 
different tasks, i.e. a clean speech task (DARPA-WSJ) and a real-
life, open-vocabulary, mobile search task (Speak4itSM), always 
reporting improved performance. We report relative error rate 
reduction of 15% for the Speak4itSM task, and similar 
improvements, up to 21%, for the WSJ task. 
 
Index Terms— Neural networks, feature extraction, robustness, 
speech recognition. 
 

1. INTRODUCTION 
 
In recent years, great efforts have been focused on the task of 
Continuous Speech Recognition (CSR), and significant advances 
in the state-of-the-art have been achieved. CSR is becoming a 
preferred user interface for mobile applications, often in “difficult” 
acoustic environments. Therefore, one of the main challenges is the 
estimation and modeling of robust to noise speech features that can 
enhance the ASR performance in noisy environments.  
 In this context, many methods have been proposed for 
robust ASR feature extraction. We can distinguish these methods 
into two large clusters: either noise-robust feature extraction or 
feature post-processing to suppress some of the noise introduced. 
Micro-modulation features† capture the fine-grain formant 
frequency variations and are extremely robust to noise [1]. It is 
also quite common to post-process features by smoothing, e.g. 
MVA [2] or RASTA [3] filtering, and by feature transformations 
like HDA and/or MLLT [4, 5, 6, 7, 8]. Especially this last scheme 
is widely adopted in most of the state-of-the-art LV-CSR systems. 
However, one of the shortcomings of this method is that it is still 
based on the non-robust cepstral features, like the MFCCs [9]. Due 
to the fact that this transformation is linear, it fails when combining 
features that are very different in nature.   
                                                
† The “micro-modulation” term is used to highlight the fine-
grained time resolution of these features. 

 This paper presents a novel method to combine these noise-
robust modulation features with cepstral features and also, filter 
out some of the present noise. The final features are shown to 
outperform any of the single-stream, cepstrum-based features 
already been used in real-life CSR applications. The instantaneous 
formant frequencies are not widely used in real-life CSR systems, 
although they contain significant acoustic information. This might 
be due to the fact that the scheme to optimally combine these 
formant measurements at the feature domain appears to be critical, 
as the experimental results of this research reveal. 
 As described in Section 2 we have studied two feature 
transformation methods for the integration of the formants 
measures with other features (MFCC, PLP [10]). These methods 
are: the linear HDA/MLLT transform [4, 6, 7, 8] and the non-linear 
bottle-neck neural network (hybrid MLP-HMM or tandem) [11, 
12, 13, 14, 15, 16] approach. Section 3 describes the algorithm for 
measuring the micro-modulation formant-related audio features. 
The experiments in Section 4 show that the MLP-based feature 
transform successfully uses the combination of formant measures 
with PLP’s to obtain 2.3 % absolute WER reduction (11% relative) 
over the linear HDA/MLLT transform of PLP’s alone, and 3.2% 
absolute WER reduction (15% relative) over the linear transform 
of MFCC’s. The adoption of the MLP-based transform is essential, 
because HDA/MLLT proves ineffective with the formant 
frequencies. These results have been obtained on a real-life, open-
vocabulary, mobile search task (Speak4itSM). Similar results, up to 
21% relative improvements, are also reported on the standard 
DARPA-WSJ task. Sections 5 and 6 contain the conclusion, and 
the “relation to prior work”, as requested by the submission 
guidelines. 
 

2. FEATURE TRANSFORMATION 
 
2.1. Linear Discriminative Front-End. 
 
We have first adopted a discriminative feature extraction technique 
known as Heteroscedastic Discriminant Analysis (HDA) [4], a 
particular formulation of [5]. Given a number of recognition 
classes with arbitrary Gaussian distributions, the HDA transform 
provides features that maximize a ratio of between-class and 
within-class distortion measures. To minimize the loss of 
likelihood with diagonal covariance GMM states, we also apply a 
maximum likelihood linear transform (MLLT) [4, 6, 7, 8]. For 
simplicity, we will refer to the joint application of the HDA and 
MLLT transforms as “HDA”. 

Figure 1 depicts the application of the HDA transform to 
“super-vectors” of concatenated 11 consecutive frames (centered 
on the “current” frame) of MFCC (or PLP or other) “raw” acoustic 
features, to extract feature vectors of 60 dimensions for acoustic 
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HMM training and ASR decoding. CMS on the sentence level is 
applied to the raw acoustic features. 

Figure 1. HDA feature extraction from MFCC's. 

2.2.  Non-Linear Discriminative Front-End 
 
We have also adopted a hybrid, or TANDEM [11], speech 
recognition approach, based on a multi-layer perceptron (MLP), 
and on a conventional HMM. The MLP is configured as a non-
linear feature extraction and dimensionality reduction mechanism 
to generate bottleneck [12, 13, 14, 15] features from the input raw 
acoustic features.  Speech recognition is based on the conventional 
HMM, with context-dependent (triphones) Gaussian mixture 
model states of the bottle-neck feature vectors. 

The structure of the adopted MLP bottleneck component 
is shown in Figure 2. Super-vectors of raw acoustic features (242 
MFCC components in the Figure) are built by frame concatenation 
similarly to the HDA transform (Section 2.1). The global means 
and variances of the training data super-vector components are 
normalized to zero and unit values, respectively, before MLP 
training. The node activation functions are hyperbolic tangents, 
except for the softmax function at the output layer. During the 
MLP training the targets of the output nodes are set according to 
the supervised phoneme state segmentation generated by an HMM 
recognizer, with the cross-entropy as training criterion.  

After training, the MLP outputs give an estimate of the 
HMM state posteriors given the input raw features. Intuitively the 
“bottleneck” node-layer (of dimension 60, Figure 2) provides a 
compact representation of the posterior probabilities: this motivates 
the adoption of the bottleneck node values (inputs of the node 
activation functions) as features for the HMM training and 
recognition. 

We have trained the MLP with methods developed in-
house, based on the BLAS library and multi-threading for 
enhanced computation speed. The MLP weights are estimated by 
iterative stochastic gradient descent with mini-batches of 300 
vectors. The mini-batches are randomly created from the training 
corpus after each training epoch. The training is terminated after 10 
epochs. We have spot-checked the ASR accuracies with MLP’s 
trained up to 50 epochs, and we have observed only small changes 
with respect to the results corresponding to the 10 epochs. The 
learning rate is adjusted after every mini-batch weight update, 

according to the formula [17, 18] !
1+"t

, where t  is the mini-

batch index and !,"  are two constants defining the learning rate 
for the first and subsequent mini-batches, respectively.  Setting the 
value of !  equal to the reciprocal of the number of mini-batches 
in an epoch, works well for our applications. 

We have also experimented with batch MLP training by 
the resilient back-propagation method (iRPROP) [19, 20], (details 
in Section 4.1).    

 
Figure 2. Structure of bottleneck MLP. 

 
3. MICRO-MODULATION FEATURE ESTIMATION 

 
The micro-modulation features capture the speech formant fine 
structure taking advantage of the excellent time resolution of the 
Energy Separation Algorithm (ESA). These features provide 
information on the instantaneous formant frequency variations and 
on the transient speech phenomena, and are complementary to the 
cepstral features. Herein, we employ the regularized GaborESA 
algorithm [21] for the demodulation process.  

In more detail, the AM-FM speech model [22] dictates 
that the formant frequencies are not constant during a single pitch 
period, but they can vary around a center frequency. These 
variations are partly captured by the micro-modulation mean 
frequency and bandwidth coefficients Fi, Bi [21] defined for the ith 
filter as, 
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where !! !  and !! !  are the instantaneous amplitude and 
frequency signals, ! = 1… 6  is the filter‡  index, and ! the time 
window length. The instantaneous signal !!! !  is used as weight 
for the estimation of the Fi, Bi coefficients, deemphasizing the 
contribution of !! !  when the instantaneous amplitude signal takes 
smaller values (and thus, its estimates are not accurate enough, 
[22]). Finally, the coefficients are estimated over rolling 20ms long 
windows with overlap of 10ms (exactly how the cepstral features 
are estimated). These micro-modulation features model acoustic 
phenomena in a much different time-scale than the widely used 
Cepstral features. Consequently, a simple concatenation of these 
different features with the MFCC’s or PLP’s is far from optimal, 
causing some loss of acoustic information and eventually a 
degradation of the overall ASR performance. Herein, we suggest 
using the DNN architecture to combine them, taking advantage of 

                                                
‡ There is an almost one-to-one correlation between the filters and 
the speech resonances [22]. 
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both the nonlinear relation between the different acoustic cues and 
the concatenated input vectors. 

We propose using two different features based on the 
estimated mean/bandwidth quantities [21]. The first feature set is 
the “Instant. Frequency Means” (IFMean’s), where the feature 
vector consists of the 6 Fi coefficients, i.e. one coefficient per 
Gabor filter (using a 6-filter Gabor filterbank), as described in 
detail in [25]§. The second feature set is called “Frequency 
Modulation Percentages” (FMP’s) and it consists of the normalized 
bandwidth estimates, i.e. the !!/!! coefficients. After some 
experimentation, we have found that a 12-filter Gabor filterbank 
performs better than the first 6-filter one for the case of the FMP’s.  

The first feature set provides an estimate of the mean 
formant frequencies in a finer time-scale. The second one provides 
estimates of the normalized formant frequency variances. 
 

4. ASR EXPERIMENTS 
 
To make valid comparisons between different frontends we apply 
the same processing to different audio feature types: eleven 
consecutive frame vectors are concatenated into super-vectors. 
These are transformed (by HDA or MLP) into 60 dimension 
feature vectors, used for HMM training and recognition. For a 
given ASR task, we train the triphonic HMM’s for different 
frontends with the same number of parameters and MLE 
procedure. The lexicon and language model have been kept the 
same for all of the examined features, to investigate only the 
impact of the frontend scheme upon the overall system 
performance. The examined raw feature types, prior to 
concatenation into super-vectors, are the following: 

• MFCC: 21 mel frequency cepstra [9], and frame energy. Super-
vectors of 242 dimensions. 

• PLP: perceptual linear prediction coefficients [10], and frame 
energy, optimized to a total of 16 coefficients per frame. Super-
vectors of 176 dimensions. 

• PLP+IFMean: the PLP coefficients plus formant frequencies 
(Section 3.1), estimated over 6 bands, or 22 coefficients in total 
per frame. Super-vectors of dimensions 242. 

• PLP+FMP: the PLP coefficients plus the normalized formant 
bandwidths (Section 3.2), estimated on 12 bands, or 28 
coefficients per frame. Super-vectors of 308 dimensions. 

 
The ASR accuracy is measured on two different CSR 

tasks with different noise conditions and technical challenges, 
namely the DARPA Wall Street Journal (WSJ) and the Speak4itSM 
tasks. 
 
4.1  DARPA-WSJ  
 
We performed speaker-independent ASR experiments on the 
DARPA WSJ corpus (downsampled to 8 kHz), using the Nov93-
H1 and Nov93-H2 test sets, and the 3-gram language models built 
at MIT Lincoln Laboratories. The bottleneck MLP and the HMM 
are trained on the WSJ 284 speaker set. 

For the baseline linear feature extraction, we have 
adopted two HDA/MLLT matrices, namely, HDA estimated on a 

                                                
§ The filterbank configuration is motivated by the formant structure 
of speech signals. The Gabor filters are chosen for their optimal T-
F properties. 

large collection of telephone band-width data and HDAWSJ 
estimated on the WSJ training data. 

Table 1 shows the word accuracies for the two WSJ test 
sets, and the described frontends. The entries in the first column 
denote the frontend type, characterized by the transform type (i.e. 
MLP or HDA) and the respective, dash separated, super-vector of 
the input audio raw features (e.g. “MLP-PLP+IFMean” stands for 
MLP transform of the super-vector of the PLP and IFMean 
features).  

The results shown in Table 1 are obtained with MLP’s 
trained by stochastic gradient descent. Batch iRPROP training has 
produced lower accuracies than stochastic training, even when 
using a larger number (up to 1,000) of epochs (compare 
MLPiRPROP-MFCC and MLP-MFCC in Table 1). 
 The bottleneck MLP feature transform, when applied to 
the PLP’s, (see HDAWSJ-PLP vs. MLP-PLP) outperforms the HDA 
transform, with absolute word error rate reductions of 1.1% (8.3% 
relative) and 0.8% (13% relative) on the Nov93-H1 and the 
NOV93-H2, respectively (with larger gains, up to 18% relative, for 
the MFCC’s). The integration of the formant frequencies with the 
PLP coefficients (see MLP-PLP+IFMean further decreases the 
error rate by 1.8% and 1.3% absolute (14% and 21% relative), on 
the two test sets respectively. 
 When the HDA transforms (of the MFCC’s and PLP’s, 
respectively) are estimated on the same WSJ data (see the 1st and 
3rd lines of Table 1), the accuracies of the MFCC’s and PLP’s are 
very similar. Since we believe that the PLP’s offer better 
performance than the MFCC’s in noisy conditions we have focused 
on improving the PLP performance by adding the micro-
modulation features of Section 3. In fact, on the noisier speech of 
the Speak4it task (next Section), the PLP’s provide much better 
accuracy than the MFCC’s. 

Table 1. Word accuracy for the WSJ task. 

Frontend Nov93-H1 Nov93-H2 
HDAWSJ – MFCC  
(MFCC baseline) : 86.6 % 94.0 % 

HDA - MFCC : 87.2 % 94.3 % 
HDAWSJ - PLP: 
(PLP baseline) 86.8 % 93.8 % 

MLPiRPROP  – MFCC: 87.0 % 94.8 % 
MLP - MFCC: 88.4 % 95.1 % 

MLP - PLP: 87.9 % 94.6 % 
MLP - PLP+IFMean 88.6 % 95.1 % 

 
4.2. Speak4itSM 
 
We have performed more extensive tests of different feature types 
on the Speak4itSM application [23, 24], concerning real-life voice 
search queries using mobile devices. A noise analysis of the 
database reveals that the corrupting noise is low-pass (on average) 
with an average SNR of about 20 dB. The training and testing sets 
contain 337k and 6.5k sentences, respectively, with an average 
length of 2.5 words per sentence.   
 MLPs trained on different raw acoustic features have 
exactly the same structure (Figure 2), except than the input node 
layer that must accommodate different super-vector dimensions, 
respectively. Figure 3 shows the cross-entropy distortion (training 
data), versus the MLP training epoch. It is interesting to note that 
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the PLP features obtain a lower distortion than the MFCC features, 
even if the PLP vectors have fewer coefficients and the respective 
MLP has fewer free parameters. The raw features PLP+IFMean, 
with the added formant frequencies (and same dimensions as the 
MFCC’s), produce even lower distortion during training. Thus 
MFCC’s, PLP’s and PLP+IFMean’s show increasingly better fits 
of the training data, respectively. This is mirrored in the ASR 
accuracy, even if, admittedly, there is no theoretical relationship 
between cross-entropy and accuracy.  

Figure 3.  Cross-entropy vs epoch for different features. 
 
After feature extraction, we trained MLE HMM’s of 19k 

triphones, 8k GMM states and 160k Gaussians (60 dimensions), 
for all features sets, respectively. 

Table 2 shows the word accuracy with either the MLP or 
HDA transforms of different audio features. In the Speak4it task 
the PLP’s are overall more accurate than the MFCC’s.  

As already observed for the WSJ task, the MLP-MFCC 
is more accurate (by 1.0% absolute) than the HDA-MFCC, and the 
MLP-PLP is more accurate than HDA-PLP (by 0.8%). This 
confirms the improved performance of the non-linear MLP-based 
feature transformation scheme w.r.t. the HDA-based scheme. 
Additional 0.8%, and 1.0% improvements over MLP-PLP are 
obtained, respectively, by adding the IFMean features (MLP-
PLP+IFmean) and the FMP features (MLP-PLP+FMP).  The MLP 
transformation of the combined PLP, IFMean and FMP features 
could not be tested by the paper submission date. 

Table 2. Word accuracy for the Speak4itSM task. 

Frontend Word 
accuracy 

Rel. WER 
reduction 

HDA - MFCC : 
(MFCC baseline) 78.1 % - 

HDA – PLP: 
(PLP baseline) 79.0 % 4.1 % 

HDA – PLP+IFMean 76.4 % -7.8 % 
MLP – MFCC: 79.1 % 4.6 % 

MLP - PLP: 79.8 % 7.8 % 
MLP - PLP+IFMean: 80.6 % 11.4 % 
MLP – PLP+FMP: 80.8 % 12.3 % 

 
It is noteworthy that the linear transform of the combined 

PLP and IFMean features (HDA-PLP+IFMean) reduces the 
accuracy w.r.t. HDA-PLP. Thus, the linear transform seems rather 
ineffective at the integration of different audio features, which is 
one of the motivations of this study of MLP-based transforms. 

The overall error rate reduction from the baseline HDA-
PLP to MLP-PLP+FMP is 1.8% absolute or 8.5% relative. 1.0% 
absolute (5% relative) is attributable to the use of the FMP features 
(compare MLP-PLP+FMP and MLP-PLP) as input to the MLP 
transform. 

 
 4.3. Improved MLP structure, Speak4it. 
 
The experiments in Sections 4.1 and 4.2 (Tables 1 and 2) are in 
part designed to compare the accuracy of the HDA/MLLT and 
MLP-based feature transforms. Therefore we created input raw 
feature super-vectors by concatenating the same number, i.e. 11, of 
consecutive frames, and we adopted the same dimensionality, i.e. 
60, for both the HDA output features and the MLP bottleneck 
features. However, it seems that this parameterization had been 
optimized for the HDA transform, and it is far from optimal for the 
MLP system.  
 We have started experimenting with better MLP 
structures. For example increasing the input super-vector of MLP-
PLP+IFMean to 17 consecutive frames (instead of 11) has 
improved the accuracy to 81.3% (instead of 80.6% in Table 2). 
 Thus the best error rate reduction (Speak4it task) with 
respect to the HDA-PLP baseline is 2.3% absolute (11% relative), 
and with respect to HDA-MFCC is 3.2% absolute (15% relative). 
 

5. CONCLUSION 
 
The proposed ASR frontend reduces the absolute word error of the 
Speak4itSM large vocabulary voice-search task by 2.3% absolute 
(11% relative) w.r.t. to the HDA transform of PLP coefficients. 
The improvement with respect to the HDA transform of MFCC’s 
is larger (3.2% absolute, or 15% relative). Large improvements, up 
to 21% relative, are also reported for the standard WSJ task. The 
proposed frontend is based on: 
• micro-modulation formant-related features, and 
• non-linear MLP-based feature transform for the integration of 

micro-modulation and cepstral features (while linear transforms 
proved ineffective). 

We hope that these results may inspire the study of 
micro-modulation features in conjunction to non-linear feature 
transforms, for the robustness of ASR applications. 
 

6. RELATION TO PRIOR WORK  
 
This research relates to linear [4, 5, 6, 7] and non-linear MLP-
based  [11, 12, 13, 14,15] feature transformation methods for ASR. 
These prior works have not focused on the potential advantages of 
combining different types of audio features as input to the feature 
transformation process. On the contrary, this paper extends the 
prior research on non-linear MLP feature transformations with the 
successful integration of spectral and formant measurements in the  
large vocabulary voice-search Speak4itSM task. Herein, it is proved 
that the MLP architecture can be successfully used to combine 
multiples of different features, keeping the non-trivial acoustic 
information. Previous work on the use of formant measures [1, 21] 
concerns small vocabulary tasks and uses separate information 
streams by combining their respective likelihoods. Instead our 
method combines the different features into one stream, by 
bottleneck MLP transforms.  This study also extends our 
previously published work on the Speak4it task [23,24]. 
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