
DEEP NEURAL NETWORK FEATURES AND SEMI-SUPERVISED TRAINING FOR
LOW RESOURCE SPEECH RECOGNITION

Samuel Thomas1, Michael L. Seltzer2, Kenneth Church3 and Hynek Hermansky1

1 The Johns Hopkins University, Baltimore, USA
2 Microsoft Research, Redmond, USA

3 IBM Research, Yorktown Heights, USA
{samuel,hynek}@jhu.edu,

mseltzer@microsoft.com, kwchurch@us.ibm.com

ABSTRACT

We propose a new technique for training deep neural networks
(DNNs) as data-driven feature front-ends for large vocabulary con-
tinuous speech recognition (LVCSR) in low resource settings. To
circumvent the lack of sufficient training data for acoustic mod-
eling in these scenarios, we use transcribed multilingual data and
semi-supervised training to build the proposed feature front-ends.
In our experiments, the proposed features provide an absolute im-
provement of 16% in a low-resource LVCSR setting with only one
hour of in-domain training data. While close to three-fourths of
these gains come from DNN-based features, the remaining are from
semi-supervised training.

Index Terms— Low resource, speech recognition, deep neural
networks, semi-supervised training, bottleneck features.

1. INTRODUCTION

Acoustic models for state-of-the-art speech recognition systems are
typically trained on several hundred hours of task specific training
data, but in low resource scenarios, one often has to make do with
much less training data. Annotated training data can be especially
hard to come by. In these settings, it is possible to take advantage of
transcribed data from other languages to build multilingual acoustic
models [1, 2]. Multilingual training with Subspace Gaussian Mix-
ture Models [3] have also been proposed to train acoustic models
[4, 5].

An alternative approach moves the focus to data-driven feature
front-ends. The key element in this data-driven approach is a multi-
layer perceptron (MLP) trained on large amounts of task indepen-
dent data, i.e. multilingual data or data from the same language
but collected under different settings [6, 7]. Features correspond-
ing to limited task specific data are then derived using the trained
MLP for ASR [8, 9, 10, 11, 12]. We build on this front-end-based
approach since features produced using these front-ends can further
improve performance in low-resource settings when combined with
other ASR modeling techniques.

While this work is related to several recent approaches [8, 9,
10, 11, 12], we use two different techniques to derive better fea-
tures and improve acoustic model training in low resource settings:
data driven features extracted using deep neural networks (DNN)

This work was supported in parts by the DARPA RATS project
D10PC0015, IARPA BABEL project W911NF12-C-0013, and by the Johns
Hopkins Center of Excellence in Human Language Technologies.

and semi-supervised training. We show that both these techniques
significantly improve the performance of ASR systems in these sce-
narios. In Section 2 we discuss the use of multilingual data to build
a DNN-based front-end. The use of semi-supervised training to im-
prove both the DNN and GMM-HMM-based acoustic models is dis-
cussed in Section 3. The paper concludes with Section 4.

2. DEEP NEURAL NETWORK-BASED FEATURES

A deep neural network (DNN) is an MLP with several more lay-
ers than traditionally used networks. The parameters of a DNN are
often initialized using a pre-training algorithm before the network
is trained to completion using error back-propagation [13, 14]. In
this section we discuss the development of a DNN for low-resource
scenarios.

2.1. DNN pre-training and initialization

The purpose of pre-training is to initialize the parameters of a DNN
network to a better starting point than random initialization prior to
back-propagation. Networks trained from pre-trained weights are
observed to be well regularized and converge to a better local op-
timum than randomly initialized networks [15, 16]. As with tradi-
tional neural networks, DNNs have been used both as acoustic mod-
els that directly model context-dependent states of HMMs [17] and
also as data-driven feature extractors [18, 19]. In both cases, DNNs
have outperformed traditional shallow networks [17, 20].

DNNs can be pre-trained using either a generative or discrimi-
native approach. In generative pre-training, the network is trained in
a layer-by-layer manner, by treating each successive pair of layers
as a restricted Boltzmann machine (RBM). The weights that connect
a pair of layers are trained in an unsupervised fashion using an ap-
proximate maximum likelihood criterion known as contrastive diver-
gence [21]. Alternatively, the network can be initialized using dis-
criminative pre-training [13, 22]. This procedure starts by training an
MLP with 1 hidden layer using back-propagation. These weights are
fixed and a new randomly initialized hidden layer and output layer
are introduced to replace the output layer of the initial network. The
deeper network is then trained again using back propagation. This
procedure is repeated until the desired number of hidden layers are
in place.

Although pre-training algorithms are effective in initializing
DNNs, they require sufficient training data to perform properly.
In low resource settings, the amount of data available is often in-
sufficient. We show that in these scenarios, pre-training can be
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performed using multilingual data before the DNN is finally adapted
with a limited amount of task specific monolingual data.

We propose to train a DNN with L wide layers and a bottleneck
layer - d, h1, . . . , hL, hB , p. The network has a linear input layer
with a size d corresponding to the dimension of the input feature
vector, followed by several nonlinear layers h1, . . . , hL, hB and a
final soft-max output layer of size p corresponding to the phoneset
of the multilingual data the DNN is being trained on. Both posterior
and bottleneck features [23, 24] can be derived from the DNN. We
use the following steps to pre-train a DNN:

1. Initialize the network: We perform discriminative pre-
training, starting with a network with 1 hidden layer - d, h1, p.
The weights are initialized randomly and trained using a sin-
gle epoch of back propagation, similar to [13].

2. Grow the network: The d, h1, p network is now grown by in-
serting a new layer h2 with randomly initialized weights con-
necting h1-h2 and h2-p. The weights in the first layer are kept
fixed and a single epoch of back propagation is performed to
pre-train the weights in the second layer. This process is re-
peated for subsequent layers until the L hidden layers have
been added. The final network d, h1, . . . , hL, hB , p is created
by adding a bottleneck layer hB . While weights connecting
the wide layers till L-1 are copied from the previous step, new
random weights are used to connect hL-hB and hB-p.

3. Train the full network: After all the layers of the network
have been discriminatively pre-trained, the complete network
is trained to convergence.

Once the DNN has been trained using multilingual data, it is updated
using limited amounts of monolingual data from the low-resource
setting.

2.2. Updating the DNN with monolingual data

Incompatible phoneme sets can be a challenge for adapting networks
across languages. In previous work, we proposed the use of a modi-
fied neural network in which the final phoneme-dependent soft-max
layer is replaced [11]. We use this technique in this work for adapt-
ing the DNN as well.

1. Initialize the network for the low resource language: To train
a DNN for a new language with a different phoneme set q,
we use the multilingual DNN described in Sec. 2.1 but re-
place the parameters of the output layer with randomly ini-
tialized weights. These weights between hB and q are then
discriminatively trained using monolingual data, keeping the
parameters of the lower layers fixed.

2. Update the network on the low resource data: Once the new
DNN d, h1, . . . , hL, hB , q has been initialized, we update all
the parameters using the low-resource language.

Features for ASR are then derived from the bottleneck layer of the
final DNN.

2.3. Experiments and Evaluations

We use the English, German and Spanish parts of the Callhome
corpora collected by LDC for our experiments [25, 26, 27]. The
English database consists of 120 spontaneous telephone conversa-
tions between native English speakers. The complete training set
consists of 80 conversations, corresponding to about 15 hours of
speech [25]. We use 1 hour of randomly chosen speech from the

training set for our experiments as an example of data from a low-
resource language. The English DNNs and subsequent HMM-GMM
systems use this one hour of data. Two sets of 20 conversations,
roughly containing 1.8 hours of speech each, form the test and de-
velopment sets. The German and Spanish databases contain 100 and
120 spontaneous telephone conversations, respectively, between na-
tive speakers. We use 15 hours of German and 16 hours of Spanish
as data from out-of-domain high resource languages for training the
DNNs. Each of these three languages have a different phoneme set:
47 phonemes for English, 46 for German and 28 for Spanish.

Speech recognition experiments are performed using HTK. We
train an acoustic model with 600 tied states and 4 Gaussians per state
on the 1 hour of data from the low resource language. We use fewer
states and components per state mixture since the amount of training
data is low. The recognizer uses a 62K trigram language model with
an OOV rate of 0.4%, built using the SRILM tools. The language
model is interpolated from individual models created using the En-
glish Callhome corpus, the Switchboard corpus [28], the Gigaword
corpus [29] and some web data. The web data is obtained by crawl-
ing the web for sentences containing high frequency bigrams and
trigrams occurring in the training text of the Callhome corpus. The
90K PRONLEX dictionary with 47 phones is used as the pronunci-
ation dictionary for the system. The test data is decoded using the
HDecode decoder from HTK, and scored with NIST scoring scripts.

We build a multilingual DNN front-end by combining data from
Spanish, German and English. Separate DNNs are trained on two
different feature representations, short-term spectral PLP features
[30] and long-term FDLP-based modulation features [31]. Bottle-
neck features from these front-ends are then combined and used for
ASR experiments.

2.3.1. DNN pre-training with multilingual data

A multilingual speech corpus consisting of 16 hours of Spanish, 15
hours of German and 1 hour of English is used to train a 5 layer mul-
tilingual DNN network following the procedure described in Sec.
2.1. Training is performed using a combined phoneme set size of 52
derived from a count-based mapping [8].

Two DNNs are trained on different feature representations. The
first network is trained on a 9-frame context window of 39 dimen-
sional PLP features (13 cepstral + ∆ + ∆∆ features). The network
has 2 wide hidden layers and a bottleneck layer, resulting in an ar-
chitecture of 351 x 1000 x 1000 x 25 x 52. The second system
is trained on modulation features derived using FDLP. These fea-
tures (FDLPM) correspond to 28 static and dynamic modulation fre-
quency components extracted from 17 bark spaced bands. A reduced
feature set from only 9 alternate odd bands is used to train a system
with an architecture of 252 x 1000 x 1000 x 25 x 52. Both the sys-
tems are trained with the standard back propagation algorithm us-
ing a cross entropy error criterion. The learning rate and stopping
criterion are controlled by the frame classification error on a cross
validation data set.

2.3.2. DNN adaptation to low-resource settings

Each of the multilingual DNN networks is then adapted to the low-
resource setting using 1 hour of English data. This is done by replac-
ing the multilingual output layer of the DNNs with an output layer
corresponding to the English phoneset (Sec. 2.2).

After initialization, PLP and FDLPM features derived from 1
hour of English are used to train the new low-resource networks.
These networks have the same architecture as before, except that
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Table 1. Word Recognition Accuracies (%) with different monolin-
gual training configurations.

Amount of English PLP DNN
training data features features

1 hour 28.8 31.2
15 hours 46.5 49.7

Table 2. Word Recognition Accuracies (%) with different multilin-
gual training configurations

DNN
Network Configuration features
MLP with random initialization followed by
multilingual training + update with 1h of English 37.2
DNN with random initialization followed by
multilingual training + update with 1h of English 40.7
DNN with discriminative pre-training followed by
multilingual training + update with 1h of English 41.0

they now have a 47-dimensional English-specific output layer. These
networks are then used to derive bottleneck features. The 2 sets of
25-dimensional bottleneck features from each of the networks are
concatenated before applying a dimensionality reduction to form the
final 25-dimensional bottleneck feature vector for speech recogni-
tion [11].

2.3.3. Experiments using DNN features

Table 1 shows the recognition accuracies using conventional PLP
features and the DNN based features derived using monolingual
data. Separate baseline systems are trained with 1 hour of English
(similar to a low-resource setting) and with all the available 15 hours
of transcribed data. Although DNN based features perform better,
their performance is still poor in low-resource settings.

Experiments in Table 2 show that the performance gaps ob-
served in Table 1 can significantly be reduced by utilizing mul-
tilingual training data. Additional improvements are obtained by
increasing the number of hidden layers from two in [11] to three
layers in the current approach and by pre-training the DNN in the
multilingual training stage. In separate experiments, placing the
bottleneck layer in the center as used in [18] did not provide any
gains.

These experiments demonstrate how the performance of the
DNN-based front-end can be improved by augmenting the one hour
of English data with data from other languages. However, the rec-
ognizer was still trained on just the one hour of available transcribed
English. In the next section, we show how semi-supervised training
can be used to generate additional transcribed training data for both
the acoustic model and front end.

3. SEMI-SUPERVISED TRAINING

Semi-supervised training has been effectively used to train acoustic
models in several languages and conditions [32, 33, 34, 35, 36]. This
section discusses the application of these approaches to low-resource
settings. We start by using a baseline decoder (the best front-end and
acoustic model we have so far) to generate recognition hypotheses
for any available untranscribed training data. The most reliable of
these estimated transcriptions are then combined with the limited

existing transcribed training data to train both of the DNN front-end
and GMM-HMM acoustic models in a semi-supervised fashion.

3.1. Selecting reliable data

In low-resource settings, it is important to select reliable outputs
from the baseline decoder, since the quality of the outputs vary con-
siderably from quite good (should be used) to poor (should be ex-
cluded). We use a selection that uses a hybrid combination of two
confidence scores.

3.1.1. ASR-based word confidence scores

ASR lattice outputs can be treated as directed graphs with arcs rep-
resenting hypothesized words. Each arc spans a duration of time
(ts, tf ), that the word is hypothesized to be present in the speech
signal and is associated with acoustic and language model scores.
Using these scores, word posterior probabilities can be computed
using the standard forward-backward algorithm [37]. For any given
hypothesized word wi, at a given time frame t, several instances of
the word can be present on different lattice arcs simultaneously. A
frame-based word posterior of wi can be computed as

p(wi|t) =
X

j

p(wj
i |t) (1)

where j corresponds to all the different instances of wi that are
present at time frame t [38]. In our proposed selection technique
we use a word confidence measure Cmax based on these frame level
word posteriors [38], given as the maximum word confidence of the
word in its hypothesized time interval (ts, tf )

Cmax(wi, ts, tf ) = max
tε(ts,tf )

p(wi|t) (2)

3.1.2. MLP posteriogram-based phoneme occurrence confidence

In addition to the word confidence scores from the speech recog-
nizer, we also derive confidences scores from phoneme posterior
outputs of a neural network classifier. This confidence measure
uses a posteriogram representation of an utterance, derived by pass-
ing the acoustic features corresponding to the utterance through
the trained DNN front-end classifier. For each hypothesized word
wi in the ASR transcripts, we first look up its set of constituent
phonemes {p1, p2 . . . pn} from a pronunciation lexicon. Posteriors
corresponding to each phoneme are then selected for the utterance’s
posteriogram representation and binarized to indicate the phoneme’s
presence or absence using a set threshold. The average number of
times the constituent phonemes appear in the hypothesized time
span (ts, tf ) along a Viterbi search path is then used as confidence
measure. The selected path is designed to produced an occurrence
count while visiting all constituent phonemes in sequence. The
rationale behind this measure is that if a word is hypothesized cor-
rectly, it is likely that all its constituent phonemes will be present
in the posteriogram, hence resulting in a high average occurrence
count. The proposed count-based measure is computed as

Cocc(wi, ts, tf ) =
c

N
(3)

where c is the total number of times phoneme occurrences and N is
the total number of frames in the hypothesized interval (ts, tf ).

A logistic regression is used to combine the two confidence
measures into a single hybrid confidence score. The regressor is
trained to predict a combined confidence using word confidence and
phoneme occurrence confidence scores using a held out data set.
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Table 3. Word Recognition Accuracies (%) at different word confi-
dence thresholds on a held-out set

Threshold Acc (%) Threshold Acc (%)
None 38.75 + 0.2 44.0
- 0.1 39.5 + 0.3 45.5
+ 0.0 41.7 + 0.4 45.4
+ 0.1 42.7 + 0.5 44.6

3.2. Experiments and results

For our experiments in low-resource settings, we use a randomly
selected 1 hour of transcribed data from the complete 15 hour Call-
home English data set covering all speakers. In our semi-supervised
training experiments we consider the remaining 14 hours as untran-
scribed data and attempt to use it.

3.2.1. Data selection

Using the ASR system trained with features from the multilingual
DNN front-end, the 14 hour set of untranscribed data is decoded.
Word lattices are generated during the decoding process and used to
generate confidence scores for each hypothesized word, as described
above. The multilingual DNN front-end is also used to produce
phoneme posterior outputs from which phoneme occurrence-based
confidence scores are derived. Combination weights for these confi-
dence scores are then estimated by training a logistic regressor on a
45 minute held-out data set with the set’s ground truth transcriptions.

After every hypothesized word in the decoded output has been
given a score using the trained logistic regression module, each utter-
ance is assigned an utterance-level score. This utterance level score
is the average of all word-level scores in the utterance.

To evaluate the usefulness of the proposed confidence selection
scheme we generate utterance level scores for the held out data. The
recognition accuracy is then evaluated on selected sentences at dif-
ferent threshold levels. Table 3 shows the word recognition accu-
racies at different thresholds on the held out set. As the threshold
increases, fewer reliable sentences get selected.

3.2.2. Selective semi-supervised training of DNNs

The initial multilingual DNN training experiments described earlier
were based on only 1 hour of transcribed data. For semi-supervised
training of DNNs we include additional data with noisy transcripts.
These utterances are selected from the untranscribed data based on
their utterance level confidences. To avoid detrimental effects from
noisy semi-supervised data during discriminative training of neural
networks, we make the following design choices -

(a) During back-propagation training, the semi-supervised data is
de-weighted. This is done by multiplying the cross-entropy er-
ror with a small multiplicative factor during training.

(b) The semi-supervised data is used only in the final pre-training
stage after all the layers of the DNN have been created.

(c) Only a limited amount of selected semi-supervised data is
added.

For our experiments we select about 4.5 hours of data using ut-
terances with a score of 0.3 and greater. This data is then combined
with the multilingual pre-training data set of 15 hours of German, 16
hours of Spanish and 1 hour of English. During the DNN training,
we use a multiplicative factor of 0.3 to de-weight the cross-entropy
error from the semi-supervised data.

Table 4. Word Recognition Accuracies (%) with semi-supervised
pre-training. ASR models are trained on 1hr-Eng-all-spks in both
cases.

System Acc (%)
Multilingual pre-training 41.0

Multilingual pre-training with selected
semi-supervised data 42.7

Fig. 1. Word Accuracy (%) improves with more and more semi-
supervised data

The semi-supervised data is used in the final pre-training stage
(Sec. 2.3.1, step 3) to train both the DNN networks using PLP and
FDLPM features (Sec. 2.3). After pre-training, both the networks
are adapted with 1 hour of English as before. Bottleneck features
from both the networks are combined and used to train the low-
resource ASR system with 1 hour of data. Table 4 shows the per-
formance of the system after using semi-supervised data.

3.2.3. Semi-supervised training of acoustic models

Features from the DNN front-end with semi-supervised data are used
to extract data-driven features for semi-supervised training of the
ASR system. Similar to the weighing of semi-supervised data dur-
ing the DNN training, we also use a simple corpus weighing while
training the ASR systems. This is done by adding the 1 hour of fully
supervised data with accurate transcripts twice.

To understand the effect of the semi-supervised data, we eval-
uate the recognition performance using different amounts of semi-
supervised data. We observe that as we double the amount of semi-
supervised data, there is close to a 0.5% increase in performance
(Fig. 1). With semi-supervised training, the performance (44.8%)
becomes comparable with the performance using conventional fea-
tures (46.5%) on all the transcribed training data (Table 1).

4. CONCLUSIONS

This paper describes how complex neural networks classifiers can
be built in low resource settings, using multilingual data and semi-
supervised training. Semi-supervised training is used for training
both neural network front-ends as well as acoustic models. We ob-
serve an absolute improvement of 16% in a low resource setting with
only 1 hour of transcribed training data. Close to three-fourths of this
gain come from DNN-based discriminative features and the remain-
ing gains come from semi-supervised training.
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