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ABSTRACT

This paper introduces novel paradigms for the segmentation of
speech into syllables. The main idea of the proposed method is based
on the use of a time-frequency representation of the speech signal,
and the fusion of intensity and voicing measures through various fre-
quency regions for the automatic selection of pertinent information
for the segmentation. The time-frequency representation is used to
exploit the speech characteristics depending on the frequency region.
In this representation, intensity profiles are measured to provide in-
formation into various frequency regions, and voicing profiles are
measured to determine the frequency regions that are pertinent for
the segmentation. The proposed method outperforms conventional
methods for the detection of syllable landmark and boundaries on
the TIMIT database of American-English, and provides a promising
paradigm for the segmentation of speech into syllables.
Index Terms : speech segmentation, syllable segmentation, time-
frequency representation, information fusion.

1. INTRODUCTION

The segmentation of speech into segments is crucial in many
applications of speech technologies (speech-to-text and text-to-
speech systems). The main requirement of these technologies is
the conversion of speech into a linguistic sequence that can be
interpreted by humans, or by natural language processing (NLP) for
further processing (human-computer interaction, spoken dialogue
systems). Consequently, research has mostly focus on the study of
phoneme or word recognition which has lead to the development
of well-established speech recognition systems (HTK [1], SPHINX
[2], HTS [3]). Speech segmentation systems are generally based on
hidden Markov Models (HMM) in which acoustic and language
models are determined with regard to a specific language. Conse-
quently, the system requires to be adapted to the linguistic system
of a language - i.e. the development of NLPs specific to the desired
language - and cannot be used for under-resourced languages.

More recently, studies on the use of speech prosody have revea-
led the role of syllable segments - widely referred as the elementary
segment of speech prosody - in speech recognition and synthesis
systems [4, 5, 6, 7]. Moreover, the segmentation of speech into
syllables may be extremely useful to improve content-based voice
conversion systems (identity conversion, emotion transformation, or
speech-to-sing systems) without requiring the use of NLPs [8, 9].
Contrary to the phoneme system which is specific to a language,
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Figure 2: Auditory Attention Model and Gist Extraction

of these features are tuned to different local oriented edges; i.e.
frequency contrast features are tuned to local horizontally ori-
ented edges, which are good for detecting and capturing for-
mants and their changes as discussed later. Next, the multi-scale
feature maps are converted to low level auditory gist features,
which capture and summarize the overall statistics and contex-
tual information of the acoustic scene. Finally, a neural network
is used to discover the relevant oriented edges and to learn the
mapping between the gist features and syllable boundaries.

The rest of the paper is organized as follows. The auditory
attention model together with gist extraction is explained in Sec-
tion 2, which is followed by experimental results in Section 3.
The concluding remarks are presented in Section 4.

2. Auditory Attention Model
The block diagram of the auditory attention model is shown in
Fig 2. As stated earlier, the model is biologically inspired and
hence mimics the processing stages in the human auditory sys-
tem. First, the auditory spectrum of the input sound is computed
based on early stages of the human auditory system. The early
auditory system model used here consists of cochlear filtering,
inner hair cell, and lateral inhibitory stages mimicking the pro-
cess from basilar membrane to the cochlear nucleus in the audi-
tory system [10]. The cochlear filtering is implemented using a
bank of 128 overlapping constant-Q asymmetric band-pass fil-
ters with center frequencies that are uniformly distributed along
a logarithmic frequency axis. For analysis, audio frames of 20
milliseconds (ms) with 10 ms shift are used, i.e. each 10 ms
audio frame is represented by a 128 dimensional vector.

The two-dimensional auditory spectrum with time and fre-
quency axes is analogous to an image of a scene in vision. In the
next stage, multi-scale features, which consist of intensity (I),

frequency contrast (F ), temporal contrast (T ), and orientation
(Oθ) with θ = {45o, 135o}, are extracted from the auditory
spectrum based on the processing stages in the central auditory
system [10, 12].

These features are extracted using 2D spectro-temporal re-
ceptive filters mimicking the analysis stages in the primary au-
ditory cortex. Each of the receptive filters (RF) simulated for
feature extraction is illustrated with gray scaled images in Fig
2 next to its corresponding feature. The excitation phase and
inhibition phase are shown with white and black color, respec-
tively. For example, the frequency contrast filter corresponds
to receptive fields in the primary auditory cortex with an exci-
tatory phase and simultaneous symmetric inhibitory side bands.
Each of these filters is capable of detecting and capturing certain
changes in signal characteristics. For example, the frequency
contrast features are capable of detecting and capturing changes
along the spectral axis, whereas the orientation features are ca-
pable of capturing and detecting moving ripples (i.e. raising
and falling curves). One important point is that in the attention
model feature contrast is computed rather than the absolute fea-
ture strength, which is also crucial for change point detection
and segmentation.

The RF for intensity feature has only an excitation phase
and is implemented using a 2D Gaussian kernel. The RF for
generating frequency contrast, temporal contrast and orientation
features are implemented using 2D Gabor filters with angles 0o,
90o, {45o, 135o}, respectively. The multi-scale features are ob-
tained using a dyadic pyramid: the input spectrum is filtered and
decimated by a factor of two, and this is repeated. Finally, eight
scales are created (if the scene duration is larger than 1.28 s;
otherwise there are fewer scales), yielding size reduction fac-
tors ranging from 1:1 (scale 1) to 1:128 (scale 8). For details of
the feature extraction and filters, one may refer to [10, 12].

After multi-scale features are obtained, the model com-
putes “center-surround” differences by comparing “center” fine
scales with “surround” coarser scales yielding feature maps.
The center-surround operation mimics the properties of local
cortical inhibition and detects local temporal and spatial discon-
tinuities. It is simulated by across scale subtraction (!) between
a center scale c and a surround scale s yielding a feature map
M(c, s):

M(c, s) = |M(c)!M(s)|, Mε{I, F, T, Oθ} (1)

The across scale subtraction between two scales is computed by
interpolation to the finer scale and point-wise subtraction. Here,
c = {2, 3, 4}, s = c + δ with δε{3, 4} are used, which results
in 30 feature maps when there are eight scales.

Next, an “auditory gist” vector is extracted from the feature
maps of I , F , T ,Oθ such that it covers the whole scene at low
resolution. To do that, each feature map is divided into m-by-n
grid of sub-regions and mean of each sub-region is computed
to capture the overall properties of the map. For a feature map
Mi with height h and width w, the computation of feature can
be written as:

Gk,l
i =

mn

wh

(k+1)w
n

−1∑

u= kw
n

(l+1)h
m

−1∑

v= lh
m

Mi(u, v), (2)

where k = {0, · · · , n − 1}, l = {0, · · · , m − 1}, and feature
map index i = {1, · · · , 30}. An example of gist feature extrac-
tion with m = 4, n = 5 is shown in Fig 2, where a 4× 5 = 20
dimensional vector is shown to represent a feature map. Af-
ter extracting a gist vector from each feature map, we obtain
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Fig. 1. Overview of the SYLL-O-MATIC system.

the syllable is universally defined in terms of acoustic sonority :
a syllable segment is fully determined by a maximum of sonority
(the vowel nucleus) surrounded by local minimums of sonority
(aggregation of consonants to the vowel nucleus). Accordingly, a
universal syllable segmentation system may be used regardless to
any specific language.

Most of existing syllable segmentation methods are derived from
the MERMELSTEIN paradigms (from [10] to [11, 12]), optionally
together with statistical processing (ANNs/HMMs [13, 14, 12]). In
the MERMELSTEIN method [10], the measurement of sonority is
approximated by the intensity measure through a spectral regions
assumed to be relevant for the processing of vowel speech (formant
region). Then, a recursive method is used for the final segmentation
into syllables. More recently, the XIE and the ZHANG systems
[12] have introduced the additional use of voicing information
to improve the detection of vowel landmarks. Finally, the WU,

6699978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



WANG, and the KALINLI systems [11, 15, 17] have investigated the
exploitation of a multi-resolution spectral representation for syllable
segmentation - using linear predictive coding, subband-based spec-
tral correlation, and auditory attention cues. However, there is still
no available well-established system for blind syllable segmentation.

This paper introduces novel paradigms for the blind segmenta-
tion of speech into syllables. The main idea of the proposed method
is based on the use of a time-frequency representation of the speech
signal, and the fusion of intensity and voicing measures through va-
rious frequency regions for the automatic selection of pertinent in-
formation for the segmentation. The time-frequency representation
is used to exploit the speech characteristics depending on the fre-
quency region. First, intensity and voicing profiles are determined
over various frequency bands. Then, the voicing profile is used to
determine the confidence that can be conferred to the corresponding
intensity profile - i.e. for the selection of the spectral bands useful
for the segmentation. Finally, intensity and voicing profiles are fu-
sed in order to determine an optimal profile that will be used for the
segmentation.

2. WHAT IS A SYLLABLE ?

2.1. Definition

The syllable is a phonological unit of speech, which widely re-
ferred as the core element of speech prosody (speech rhythm and
intonation). A syllable is typically composed of a nucleus (gene-
rally, a vowel) optionally surrounded by clusters of consonants (left
and right margins) [18]. A syllable - pronounced ”within a breath”
-, is acoustically defined by the principle of sonority which is assu-
med to be maximal within the nucleus and minimal at the syllable
boundaries. The definition of sonority is motivated by underlying
physiological mechanisms (e.g., muscular tension, air flow, degree
of co-articulation). which actually reflects the degree of organization
and/or tension of speech.

Poo - poo - pee - doo !

Table 1. Typographical illustration of syllable segmentation, where
hyphens indicate syllable boundaries.

2.2. Issues in Syllable Segmentation

In the idealistic - and extreme - case of hyper-articulated speech,
each syllable would be clearly detached from each other by a silence.
However, the confrontation with real-speech in real-world conditions
causes a number of issues which introduced noisy information for
the segmentation. In particular, articulation constraints introduce a
number of noisy information for the identification of syllable land-
mark and boundaries. For instance, obstruent consonants (especially,
occlusives) may introduce undesirable maximum in the intensity
profile ; sonorant consonants may be confused with vowels ; partially
voiced vowels (e.g., semi-vowels) may not be considered as a can-
didate for vowel landmark ; and the co-articulation of vowels across
successive syllables may be extremely difficult to identify (e.g., CV
+ V). Finally, background noise and spontaneous speech introduces
additional noise, and raise in articulation rate provide less-contrasted
speech dynamics.

3. SYLL-O-MATIC

The objective of this study is to provide a robust measure of
sonority based on the fusion of intensity and voicing measure in
a single time-frequency representation. The issue of syllable seg-
mentation is decomposed into landmark and boundary detection.
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Fig. 2. Spectrogram, specific loudness, and voiced/unvoiced repre-
sentations for the SA1 utterance : “She had your dark suit in greasy
wash water all year.” spoken by FAKS0 speaker.

The segmentation is performed by exploiting a time-frequency re-
presentation of the speech signal. Landmark detection is performed
by weighting the intensity information with the voicing information.
Boundary detection is performed by exploiting the whole frequency
information. Intensity and voicing profiles are measured over various
frequency regions. Then, intensity and voicing profiles are fused in
order to determine the final sonority profile used for the segmenta-
tion into syllables.

3.1. Multi-resolution Intensity Profiles

A time-frequency representation is used to measure the intensity
contained into various frequency regions. For each frequency region,
the specific loudness is measured as :

L
(k)
t =

N(k)X
n=1

|A(t, n)|2 0.23
(1)

where : k denotes the k-th frequency region, and A(t, n) the
amplitude of the n-th frequency bin at time t in the considered
frequency region.

In this study, the specific loudness is measured over 40 Mel-
frequency bands, with unitary integrated energy in order to enhance
the information contained in low-frequency regions relatively to
high-frequency regions. Then, the specific loudness L

(k)
t is normali-

zed into a probability density function L
(k)
t norm so that each inten-

sity profile will be further equally processed.

3.2. Multi-resolution Voicing Profiles

Also, a time-frequency representation is used in order to des-
cribe the degree of voicing into various frequency regions (VUV
[19]). The analysis is based on a sinusoidal + noise representation of
the signal [20]. Then, the degree of voicing of a particular frequency
region is defined as the ratio of energy of the sinusoidal components
observed in this region to the total energy of the frequency region
[21, 22]. For each frequency region, the VUV is measured as :

VUV
(k)
t =

PN(j)

j=1 |AH(t, j)|2PN(k)

n=1 |A(t, n)|2
(2)

where : k denotes the k-th frequency region, AH(j) the amplitude
of the j-th sinusoid, and A(t, n) the amplitude of the n-th frequency
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Fig. 3. Time-frequency positions of landmark (middle) and boundary
(bottom) as determined for the SA1 utterance : “She had your dark
suit in greasy wash water all year.” spoken by FAKS0 speaker.

bin in the considered frequency band.

Hence, VUV is equal to zero when no harmonic content is
present in the frequency band, and to one when only harmonic
content is present in the frequency band. In this study, the VUV is
determined over 40 Mel-frequency bands, with unitary integrated
energy. An illustration of the time-frequency representation is provi-
ded in Figure 2.

3.3. Intermediate Fusion

Loudness and voicing profiles are then fused into a sonority pro-
file so that the voicing profile is used as a confidence measure in the
loudness profile observed at time t in the frequency region k :

S
(k)
t = L

(k)
t norm ×VUV

(k)
t (3)

This fusion is computed in order to select automatically useful infor-
mation that will further be used for the detection of vowel landmarks
- for which only voiced information is pertinent.

3.4. Candidates Selection

In the proposed time-frequency representation, the search for
landmark positions exploits the degree of voicing as a mask to fil-
ter the spectral information, while the search for boundary posi-
tions exploits the whole spectral information. For each profile obser-
ved in a frequency region, time position of candidates for landmark
and boundary are determined by using a simple method for mini-
mum/maximum detection, respectively from the probabilities S

(k)
t

and L
(k)
t norm.

landmark(k) = argmax
t

S
(k)
t (4)

boundary(k) = argmax
t

L
(k)
t norm (5)

The candidate selection forms (KxT) matrices of landmark and
boundary time/frequency positions (Fig. 3).

Then, the time positions of landmark and boundaries are de-
termined through exploiting the time-frequency positions of candi-
dates : the more frequent is observed a time position of a candidate
over frequencies, the more likely is the presence of a landmark or
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position probabilities, and the determined sequence of landmarks (L)
and boundaries (B) for the SA1 utterance : “She had your dark suit
in greasy wash water all year.” spoken by FAKS0 speaker.

a boundary. However, the exact time position of a marker may dif-
fer from one frequency region to the other - due to the asynchro-
nism of the information contained in the frequency regions. Thus,
landmark and boundary candidates are integrated over the frequency
regions by using a moving average window (typically, a 20 ms. win-
dow), and then converted into a single probability density function
p(L) and p(B) for landmark and boundary, respectively. Finally, the
optimal sequence of landmark and boundary time positions is de-
termined using a VITERBI search from the landmark and boundary
probabilities (Fig. 4).

Optionally, a selection of relevant frequency bands is performed
to regularize the integrated information for landmark detection.

pnorm(L) =
p(L)

Nvoiced
, max(pnorm(L)) = 1 (6)

where : Nvoiced is the number of frequency regions explaining a
certain amount of the total voicing of the analysis frame.

This is computed in order to re-enforce vowels observed within par-
tially voiced regions - e.g., in the case of breathy/creaky syllables at
the end of prosodic phrases (Fig. 5).
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4. EVALUATION

The proposed method has been evaluated on the American-
English TIMIT database. The TIMIT database is composed of 10 sen-
tences read by 630 american-english speakers - which represents a
total of 6300 speech utterances. The TIMIT database comes with pho-
neme and word alignment, but without syllable alignment. Thus, the
reference syllable alignment has been obtained with the NIST sylla-
bification software [23] - then, manually corrected. The TIMIT da-
tabase is divided into a train (4620 utterances) and a test set (1680
utterances). For the present study and for comparison with supervi-
sed methods, the test set has been used for the evaluation. For exact
comparison with [12], vowels and sonorants (/el/, /em/, /en/, /eng)
were considered as a syllable nucleus. The average duration of a
phoneme is around 80 ms. and the average duration of a syllable is
200 ms. The evaluation is decomposed into the detection of syllable
landmarks (vowel nucleus) and the detection of syllable boundaries,
with comparison to existing methods.

4.1. Landmark Detection

The landmark detection consists in the detection of the vowel
region of the syllable. A landmark is considered as correct if it is
detected within a syllable segment ([12]). The evaluation includes :
MERMELSTEIN, XIE, fusion of landmark candidates based on spe-
cific loudness (MULTI-BAND), specific loudness and multi-band voi-
ced/unvoiced measure (MULTI-BAND + VUV), and specific loudness,
multi-band voiced/unvoiced measure and selection of relevant fre-
quency bands for the fusion (MULTI-BAND + VUV + SELECTION).
Additionally, the performance obtained from other methods - inclu-
ding statistical methods (ANNs/HMMs) - are reported from [12]. Fi-
nally, the comparison with the WANG and KALINLI methods are not
reported due to large differences in the experimental setups. Inser-
tion rate, deletion rate, and total error rate for the compared methods
are reported in table 2.

TIMIT INSERTION (%) DELETION (%) TER (%)
MERMELSTEIN 17.9 21.3 39.2
XIE 10.9 18.4 29.3
HOWITT 13.8 24.5 38.3
SPHINX 1 22.3 15.5 37.8
SPHINX 2 25.7 10.9 36.6

MULTI-BAND 19.8 10.1 29.9
MULTI-BAND + VUV 9.1 13.2 22.3
MULTI-BAND + VUV 10.1 10.5 20.6
+ SELECTION

Table 2. Performance for landmark detection on TIMIT.

4.2. Syllable Segmentation

The final objective of the segmentation of speech into syllables
is to determine the time-positions of syllable onset and/or bounda-
ries. The evaluation consisted in the comparison of the determined
sequence of syllable boundaries to the reference one, with a +/- 50
ms tolerance (less than the average duration of a phoneme) on the
exact position of the boundaries. The evaluation includes the MER-
MELSTEIN and XIE systems for a comparison with conventional me-
thods. The implementation of the XIE system has been modified to
determine the position of syllable boundaries : first, landmarks are
detected based on periodicity and energy profiles as described in
[12] ; then, syllable boundaries are determined by using the energy
profile, only. Performances are reported in table 3.

TIMIT INSERTION (%) DELETION (%) TER (%)
MERMELSTEIN 17.2 25.3 42.5
XIE 14.3 21.2 35.5
HOWITT - - -
SPHINX 1 - - -
SPHINX 2 - - -

MULTI-BAND 24.7 10.1 34.8
MULTI-BAND + VUV 10.5 14.1 24.6
MULTI-BAND + VUV 11.2 12.8 23.9
+ SELECTION

Table 3. Performance for boundary detection on TIMIT.

4.3. Discussion

For the syllable segmentation, the detection of landmark is ea-
sier than the detection of boundaries. This observation is mostly due
to the fact that the detection of boundaries is generally conditioned
by the detection of landmarks, and that the consonant information
is more noisy than the sonorant information. In particular, sonority
peaks are generally more marked than sonority gaps - with excep-
tion of glides, dimly marked sonority peaks and partially voiced vo-
wels.In all cases, the proposed method drastically outperforms all
existing methods. The variants to the proposed method lead to the
following conclusions : 1) the use of the whole frequency infor-
mation presents a high rate of insertions which is due to noisy in-
formation contained in irrelevant frequency regions ; 2) the use of
voicing information for the selection of relevant frequency regions
significantly improves the segmentation ; 3) the selection of useful
frequency regions successfully decreases the deletion of partially
voiced vowel landmarks - with the counterpart of a slight increase
of landmarks insertion.

5. CONCLUSION

In this paper, a time-frequency representation was introduced for
the segmentation of speech into syllables. The main idea of the pro-
posed method is based on the use of a time-frequency representation
of the speech signal, and the fusion of intensity and voicing mea-
sures through various frequency regions for the automatic selection
of pertinent information for the segmentation. The time-frequency
representation is used to exploit the speech characteristics depen-
ding on the frequency region. In this representation, intensity profiles
are measured to provide information into various frequency regions,
and voicing profiles are measured to determine the frequency regions
that are pertinent for the segmentation. The proposed time-frequency
representation outperforms existing methods for the detection of syl-
lable landmarks and boundaries, and provides a promising strategy
for further research on the segmentation of speech into syllables.
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