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ABSTRACT

We present a new method for speech active level estimation
which combines a novel algorithm based on voiced speech
energy extraction with the standardized ITU-T Recommen-
dation P.56. At poor signal-to-noise ratios, the algorithm
estimates the active level by identifying intervals of voiced
speech and summing the energy of the pitch harmonics in the
time-frequency domain while rejecting that of the noise. We
compare the performance of our method with that of ITU-T
P.56 on the TIMIT database and demonstrate that it performs
exceptionally well in both high and low levels of additive
noise.

Index Terms— speech active level, noisy speech, funda-
mental frequency, pitch, speech processing.

1. INTRODUCTION

The active level of a speech signal is defined to be its av-
erage power during intervals when speech is present. The
measurement of a signal’s active level is an essential compo-
nent in many speech processing applications. A reliable mea-
surement of active level is needed to determine the SNR of
a speech signal and in non-intrusive metrics for speech qual-
ity assessment [1]. It is also essential whenever a pre-trained
speech model is combined with an estimated noise model as
in the parallel model combination technique [2, 3].

The ITU-T Recommendation P.56 [4] defines a stan-
dardized method for objectively measuring the speech active
level. The procedure first low-pass filters the rectified sig-
nal to obtain its envelope. The speech is then defined to
be active whenever the envelope has exceeded a specified
threshold within the past 200ms [5]. This threshold is cir-
cularly defined to be 15.9 dB below the active level. This
algorithm performs extremely well at high SNRs since the
speech pauses are easily detectable in the signal envelope
from their low amplitude. However, at low SNRs, the speech
pauses are difficult to identify and the algorithm falsely takes
some or all of the noise energy to be speech. Figure 1 shows
the mean error of the ITU-T P.56 algorithm as a function of
SNR for white noise. We can observe how the performance
increasingly deteriorates below 5 dB SNR, showing the need
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Fig. 1. Variation of P.56 mean error (solid line) plus and mi-
nus the standard deviation (dash-dot line) with SNR for white
noise on 1000 utterances from the training set of the TIMIT
sentence database [6].

to develop a new speech level estimation approach based on
speech characteristics that are robust to noise.

The majority of the energy in a speech signal is concen-
trated in the voiced intervals. In the time-frequency domain,
most of the voiced speech energy is located in a small num-
ber of harmonic peaks that remain detectable even at poor
SNRs. In this paper we estimate the speech active level at low
SNRs from the energy of the harmonic peaks during voiced
intervals. By combining this measurement with the P.56 esti-
mate, we obtain an algorithm that reliably estimates the active
speech level even at low SNRs.

2. HARMONIC SUMMATION ALGORITHM

We assume that voiced speech can be represented as a peri-
odic source at frequency f0 so that our signal model in the
power spectral density (PSD) domain is

Y (f) =

K
∑

k=1

akδ(f − kf0) +N(f) (1)

where N(f) represents the power spectral density of the un-
wanted noise, ak the power of the kth harmonic and K is the
number of harmonics. From equation (1) we note that, for
this idealized signal model, all the speech energy is located at
the harmonics of the fundamental frequency f0. In practice,
we process the noisy signal in overlapping frames and the en-
ergy of the harmonics is spread over a range of frequencies by
the effects of the analysis window and the rate of change of
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f0. To extract the energy of these harmonics, we need to iden-
tify the voiced speech intervals and, within these, estimate the
value of f0. This is a challenging problem at poor SNRs and
a number of algorithms have been developed in recent years.
In this paper we use PEFAC [7, 8], a pitch estimation algo-
rithm robust to high levels of noise which has been shown to
provide good results. We note that our proposed speech level
estimation algorithm can equally be implemented using any
other pitch estimator and that its robustness to noise depends
heavily on the pitch estimator performance.

Once the voiced speech segments are identified and the
fundamental frequency estimated, we need to measure the en-
ergy of the harmonics. For the energy of the kth harmonic, we
calculate a weighted integral of the frame power spectrum as
∫

h(f − kf0)Y (f)df . The weighting function, h(f), should
be chosen such that:

(i) it gathers most of the harmonic energy while avoiding
any interaction with adjacent harmonics,

(ii) it avoids including the energy of the noise in the har-
monic energy estimate.

A weighting function that accomplish these requirements
is the weighted Mexican hat wavelet, the negative normalized
second derivative of a Gaussian function, which can be ex-
pressed as

h(f) =

(

1−
f2

σ2

)

e
−f2

2σ2 (2)

To accomplish the first property, the positive part of the
weighting function needs to cover the width of the harmonic
and its total length needs to be restricted not to interact with
adjacent harmonics. To ensure this, the support of the weight-
ing function should lie withing ±min f0. The width of the
harmonic is mainly dependent on the window used to calcu-
late the periodogram of the frame, as the signal frequency
components, Yt(f), are convolved with the PSD of the win-
dow function, W (f), to give Zt(f) = Yt(f)∗W (f). Figure 2
compares the PSD of a Hamming window having the parame-
ters defined in Sec. 4 (dash-dot line) with the weighting func-
tion defined in (2) (solid line) with σ = 15. We can observe
the fulfilment of the two requirements, as the total length is
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Fig. 2. Mexican hat wavelet for σ = 15 (solid line) and PSD
of a Hamming window of length equal to 90 ms (dash-dot
line).
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Fig. 3. Variation of the harmonic summation (red) and P.56
(blue) mean error (solid line) plus and minus the standard de-
viation (dash-dot line) with SNR for white noise on 1000 ut-
terances from the training set of the TIMIT database [6].

only about 100Hz and the positive part covers the width of
the harmonic.

The second requirement, the minimization of the noise
contribution to the estimated harmonic energy, is accom-
plished since the weighting function has the property that
∫

h(f)df = 0. This means that any smoothly varying noise
spectrum will be greatly attenuated.

The energy, Et, of the first K harmonics in a voiced time
frame t, is estimated as

Et =

K
∑

k=1

max
(

0,

∫

Zt(f)h(f − kf0)df

)

(3)

The maximum function is included in (3) since the integral
can be negative when the SNR is poor. The active speech
level can now be estimated as

l̂h =
1

|V |

∑

t∈V

Et (4)

where V represents the subset of frames which are classified
as voiced by the pitch detector.

Figure 3 shows the mean and standard deviation of the
estimation error as a function of SNR both for ITU-T P.56
and for the harmonic summation algorithm described above.
While ITU-T P.56 obtains very good results at high SNRs,
its performance degrades rapidly for negative SNRs. On the
other hand, the reliability of the harmonic summation method
is more constant across all SNRs but its standard deviation is
higher and it understimates the speech level at high SNRs.

To compensate for the unvoiced speech energy and the un-
derestimation of the harmonic energy we introduced an offset,
β, such that

lh = 10 log10

(

l̂h

)

+ β (5)

The value of β is determined from a training set by minimiz-

ing the cost function J =
∑U

u=1

(

lu − 10 log10

(

l̂uh

))2

with

respect to β. This gives

β =

∑U

u=1

(

lu − 10 log10

(

l̂uh

))

U
(6)
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where lu is the speech active level ground truth in dB for the
uth utterance and U is the number of utterances used for the
training.

3. COMPOSITE ALGORITHM

As Fig. 3 illustrates, the P.56 active level estimate is more
accurate at high SNRs but the harmonic summation method
provides better results at negative SNRs. Accordingly, we
combine the results from both algorithms into a new estimate
that will provide reliable estimation over a larger SNR range.

In order to be able to combine the methods, we need to
find a measure which identifies the transition point at which
the performance of the harmonic summation method starts to
be more reliable than that of ITU-T P.56. This is achieved by

γ = 10 log10
l̂h

PN

(7)

where l̂h is defined in (4) and PN represents the noise power
estimated using the algorithm described in [9] and the imple-
mentation provided in [8]. Although it could be considered
an SNR estimation, we are not aiming to estimate the SNR
and consequently we are not directly concerned with the ac-
curacy of the SNR estimate. Figure 4 shows the root mean
squared error of ITU-T P.56 and the harmonic summation
method for different values of γ. Three different noises were
used at SNRs from −10 dB to 20 dB: white noise, car noise
and babble noise. As we can observe in Fig. 4, γ provides a
good way of identifying the point at which ITU-T P.56 perfor-
mance starts to degrade and the harmonic summation method
becomes the most reliable.

The final speech active level estimate, lc, is calculated as
a linear combination of the ITU-T P.56 estimate, lp, and the
harmonic summation method estimate, lh,

lc = ρlp + (1− ρ) lh (8)

where ρ defines the contribution of each algorithm.
To determine the optimum mapping function ρ(γ), we

minimize the cost function J =
∑U

u=1 (l − lc)
2 with respect

to ρ and we obtain
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Fig. 4. Variation of the root mean squared error of P.56 and
harmonic summation method with γ on 1000 utterances from
the training set of the TIMIT database for white noise, car
noise and babble noise.

ρ(γ) =

∑

u∈G(γ) (l
u − luh)

(

lup − luh
)

∑U

u=1

(

luh − lup
)2 (9)

where G(γ) is the set of utterances having a particular value
of γ.

From training data, we determined the optimal ρ for se-
lected values of γ as shown in Table 1. We perform linear
interpolation on this table for intermediate values of γ.

4. EXPERIMENTS

The test set and a subset of the training set from the TIMIT
database [6] were respectively used for testing and training
the algorithm. The sampling frequency of the speech material
is 16 kHz. To determine the ground truth for the speech active
level, ITU-T P.56 was applied on the clean speech signal.

For training and testing, noise from the RSG-10 database
[10] was added to the speech files to generate the noisy sig-
nals. The calculation of SNR used ITU-T P.56 [4, 8] for the
speech level and unweighted power for the noise.

The STFT used a Hamming analysis window of 90ms du-
ration and the inter-frame time increment was 10ms. This
frame duration is long enough to resolve the pitch harmonics
even for low values of f0 but short enough to limit the pitch
variation within a frame.

The speech active level estimation described in this pa-
per includes a number of algorithm parameters whose values
were determined empirically using the training set from the
TIMIT database. The β parameter was calculated from equa-
tion (6) using 1000 utterances from the training set. Three
types of noise were used at different SNRs ranging from −5
to +5 dB: white noise, car noise and babble noise. These
three noises have different spectral characteristics and were
chosen to make the results relatively independent of the noise
type. The final value was set to β = 0.85.

The linear combination of ITU-T P.56 and the harmonic
summation method was determined by the optimization of ρ
for different values of γ. The range of γ used for the esti-
mation was from −2 dB to 4 dB every 0.5 dB. Below γ =
−2 dB, the error from the harmonic summation algorithm is
much lower than that of ITU-T P.56 and ρ = 0 and above
γ = 4 dB, the superiority of the ITU-T P.56 algorithm is clear,
ρ = 1. Table 1 shows how, as expected, the optimum calcu-
lated value of ρ smoothly increases with γ.

Table 1. Optimized ρ values for different γ values

γ (dB) -2 -1 0 1 2 3 4

ρ 0 0.16 0.28 0.44 0.68 0.89 1
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(a) White noise
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(d) Pink noise
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(b) Car noise
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(e) Destroyer engine noise
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(c) Babble noise
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(f) Leopard noise
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Fig. 5. Variation of speech active level estimation accuracy on the test set of the TIMIT database with SNR for (a) white noise,
(b) car noise, (c) babble noise, (d) pink noise, (e) destroyer engine noise and (f) leopard noise. The solid lines show the mean
error of the estimation and the dashed lines the mean error plus/minus the standard deviation for each of the algorithms.

5. RESULTS

In this section, the performance of the proposed speech ac-
tive level estimator is evaluated on the test set of the TIMIT
database [6]. Six types of noise from the RSG-10 database
[10] were evaluated at different SNRs from −10 to +20 dB:
white, car, babble, pink, destroyer engine and leopard noise.
While the first three kinds of noises were used in the training,
the last three were new kinds of noises to the algorithm. This
allows the performance evaluation of the proposed method on
untrained conditions.

For each of the six noise types, Fig. 5 shows the mean
and standard deviation of the estimation error for three algo-
rithms: ITU-T P.56, the harmonic summation algorithm from
Sec. 2 and the composite algorithm from Sec. 3. We observe
how the combined method is able to select the best estimate
at different SNRs, both on noises used for the training and on
new noises. Babble and destroyer engine noise have the worst
performances, with a mean error of approximately 4.5 dB at
−10 dB SNR, and car noise have best performance, with a

mean error close to 0 dB even at −10 dB SNR. Overall, the
proposed method is able to provide a good estimation at both
high and low SNRs for all the tested noise types.

6. CONCLUSIONS

In this paper we have presented a new method for estimating
the speech active level which combines the ITU-T Recom-
mendation P.56 with novel harmonic summation approach.
The harmonic summation method extracts the speech har-
monics’ energy, providing a reliable estimation of the speech
active level even at low SNRs. A fixed offset determined from
training data compensates for any unvoiced speech power and
for the underestimation of voiced speech power. The final
speech active level estimate is calculated as a linear combina-
tion of the ITU-T P.56 estimate and the harmonic summation
method estimate. The algorithm has been evaluated on the
TIMIT test set with a range of noise types and extends by
more than 7 dB the range of SNRs for which reliable estima-
tion is possible.
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