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ABSTRACT 
 
In this paper, we propose a voice activity detection (VAD) 
algorithm based on spectro-temporal modulation structures of input 
sounds. A multi-resolution spectro-temporal analysis framework is 
used to inspect prominent speech structures. By comparing with an 
adaptive threshold, the proposed VAD distinguishes speech from 
non-speech based on the energy of the frequency modulation of 
harmonics. Compared with three standard VADs, ITU-T G.729B, 
ETSI AMR1 and AMR2, our proposed VAD significantly 
outperforms them in non-stationary noises in terms of the receiver 
operating characteristic (ROC) curves and the recognition rates 
from a practical distributed speech recognition (DSR) system. 

Index Terms—voice activity detection, frequency modulation, 
spectro-temporal analysis 
 

1. INTRODUCTION 
 
Many practical speech processing systems have been deployed in 
modern world. A VAD module, which distinguishes speech from 
non-speech in audio streams, is often a crucial component in these 
systems, such as in telecommunication systems [1][2], in the robust 
automatic speech recognition system [3] and in the speaker 
recognition system [4]. However, developing a VAD for noisy 
environments with low signal-to-noise ratios or for any non-
stationary noise is still very challenging. 

During past decades, many complex VAD algorithms were 
proposed. For instance, one algorithm, which assumed speech and 
noise are Gaussian distributed in the discrete Fourier transform 
(DFT) domain, detected each speech endpoint using a likelihood 
ratio test [5]. In addition, noise estimation and adaptation 
techniques were considered to improve its robustness under non-
stationary noise environments but with high computational 
complexity [6]. Another group of algorithms considered long-term 
speech information, such as the spectral divergence between 
speech and non-speech [7], the long-term multiband modulation 
energy tracking [8] and a novel long-term signal variability 
measure [9], for robust voice activity detection. Recently, one 
algorithm was proposed to conquer real-world noise using a 
support vector machine (SVM) recognizer on amplitude 
modulation features [10]. In addition, harmonic-related features 
were used to improve decision accuracy due to their robustness in 
noisy environments [3][11][12]. 

Neurophysiological evidences suggest that neurons of the 
auditory cortex (A1) respond to spectral modulations as well as to 
temporal modulations of the input sounds. Therefore, A1 neurons 
can be characterized by spectro-temporal receptive fields (STRFs) 
and a computational auditory model was proposed accordingly 
[13]. The multi-dimensional output representation of this spectro-

temporal auditory model is highly redundant and was compressed 
using the tensor decomposition technique for an audio 
classification application [14]. This concept of spectro-temporal 
modulation filtering has inspired many engineering approaches, 
such as using spectro-temporal features for robust speech 
recognition [15] and speaker recognition [16]. 

Stemmed from the auditory model, we have proposed a 
spectro-temporal analysis and synthesis framework for the Fourier 
spectrogram and extended the conventional Wiener filter to the 
modulation domain for speech enhancement [17]. We have shown 
that the proposed spectro-temporal analysis of the Fourier 
spectrogram can capture prominent acoustic structures, such as 
pitch, harmonicity, formant, amplitude modulation (AM) and 
frequency modulation (FM) [17]. The pitch, harmonicity and 
formants are spectrum-related features which were considered in 
recently developed VADs [3][11][12]. On the other hand, the AM 
encodes the long-term variations of the acoustic signal and was 
included in [8][10][12]. In addition, the spectro-temporal analysis 
process can capture local FM information of the input acoustic 
signal. The FM is an important feature for people to recognize 
speech in noisy environments [18] and, to our best knowledge, has 
not been considered in any VADs. Therefore, by carefully 
selecting output features of our spectro-temporal analysis process, 
we can extract FM structures specifically associated with speech 
and use those features to build a robust VAD. 

In this paper, the frequency modulation energy associated 
with harmonics is used as a simple and efficient robust speech 
event measurement. The rest of the paper is organized as follows. 
Section 2 gives a review of our spectro-temporal analysis process 
for the Fourier spectrogram and demonstrates modulation contents 
of speech and noise signals. Then, a voice activity detection 
algorithm based on valid frequency modulation energy is proposed. 
Since the proposed VAD is energy-based without any recognizers, 
it is evaluated against standard VADs just like in [9]. The 
performance comparisons are demonstrated in section 3. We end in 
section 4 with some conclusions and discussions. 
 

2. PROPOSED METHOD 
 
2.1. Mathematical formulation  
 
A1 neurons were modeled as two-dimensional complex filters 
turned to different spectro-temporal parameters [13]. This concept 
was applied to the Fourier spectrogram as follows. First the Fourier 
magnitude spectrogram of observed signal is obtained using short-
term Fourier transform (STFT) with 50% overlapping frames. 
Then the magnitude spectrogram is fed into a bank of complex 
spectro-temporal modulation filters (STMFs). The frequency 
responses of the downward (with subscript “+”, positive ) and the  
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Fig. 1. Spectro-temporal analysis of the Fourier spectrogram and 
the corresponding 4-D output; (a) a sample time waveform; (b) its 
spectrogram; (c) the 4-D (scale-rate-frequency-time) output. 
 
upward (with subscript “-”, negative ) STMFs can be written as: 
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where F  is the 1-D Fourier transform;  is the outer product and 

 indicates the half sampling frequencies of the discrete signal 
processing along the time and the frequency axes. The rate ( in 
Hz, as frequency) and the scale ( in ms, as quefrency) represent 
the Fourier domains of the time and the frequency axes, 
respectively. Note, the complex downward and upward STMFs 
only locate in the first and second quadrant of the - space, 
respectively. The hrate and hscale are derived from one-dimensional 
constant-Q gammatone filter with Q3dB = 2. Detailed descriptions 
can be found in [17].  

Therefore, the four-dimensional complex output of the 
Fourier spectrogram X(t,	f) analyzed by the bank of STMFs with 
different rate-scale parameters can be written as: 

( , , , ) { { ( , )} ( , )}C t f X t f STMF    -1
2D 2DF F          (3) 

where 2DF  and -1
2DF  denote the 2-D Fourier transform and the 

inverse 2-D Fourier transform. Fig. 1 shows the spectro-temporal 
analysis of the Fourier spectrogram and the corresponding 4-D 
output. The 4-D local-energy output |C(t,	f,	ω,	Ω)| can be further 
integrated along the frequency axis to produce a local joint spectro-
temporal modulation energy profile at any time instant it  as: 

1( , ; ) ( , , ; )i f iE t C f t                             (4) 

Furthermore, the average joint spectro-temporal modulation energy 
distribution can be derived by integrating |C(t,	f,	ω,	Ω)| along both 
the time and the frequency axes as: 

2 ( , ) ( , , , )t fE C t f                              (5) 

 
2.2. Spectro-temporal analysis 
 
The analysis process can capture spectro-temporal attributes of the 
input acoustic signal. For speech, the prominent attributes such as  
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Fig. 2. The spectrograms and the corresponding rate-scale patterns 
of clean speech, white, wind and click noises, respectively. (a) 
spectrograms; (b) rate-scale patterns at the time instants denoted by 
the dashed lines; (c) overall averaged rate-scale patterns. 
 
pitch, hamonicity, formant, amplitude modulation, frequency 
modulation and onset/offset will be resolved dominantly by certain 
STMFs. Fig. 2(a) shows the Fourier magnitude spectrograms of 
samples of speech, white, wind and keyboard click noises from left 
to right respectively. The speech sample was drawn from the 
TIMIT corpus and the white noise was from the NOISEX-92. The 
non-stationary wind noise and the keyboard click noise were 
recorded in real environments. Fig. 2(b) shows their corresponding 
E1(ω, Ω; ti) in the rate-scale domain, where the rate () is ranged 
from 1 to 64 Hz, and the scale () is from 0.25 to 16 ms, at the 
time instant denoted by the dashed lines. Furthermore, Fig. 2(c) 
shows their corresponding E2(ω, Ω) in the rate-scale domain.  

The prominent peaks of the rate-scale pattern of speech in Fig. 
2(b) reveal that the sample speech is downward moving with a 250 
Hz (4 ms) harmonic spacing, a 2000 Hz formant spacing (0.5 ms) 
and a low temporal modulation (around 4 Hz). As for the white 
noise, its magnitude spectrogram varies quickly both in the time 
and the frequency domains such that its rate-scale pattern is 
strongly activated in the high rate and high scale regions. The non-
stationary wind noise has strong energy in low frequency bands 
and its rate-scale pattern scatters especially in the low rate and low 
scale regions, which also decode formant information of speech. In 
other words, the wind noise shares similar formant structures as 
speech. Unlike the wind noise, the keyboard click noise is an 
impulse-like noise such that its rate-scale pattern has dominant 
peaks in the very low scale (due to its frequency content spreading 
all over the frequency axis) but high rate (due to its transient 
characteristic) regions. Fig. 2(c) shows the averaged rate-scale 
patterns across the time axis. From these rate-scale patterns, we 
can conclude speech and noises distribute differently in the rate-
scale domain due to their different acoustic structures. As indicated 
by these rate-scale patterns, the spectro-temporal modulations 
resolved by the dashed box region (i.e., harmonics moving 
downward or upward along the time axis at a low rate) can be 
treated as crucial structure features for speech/non-speech 
discrimination. This observation matches the psychoacoustic 
experiment results that the FM significantly enhances speech 
reception in noise for human listeners [18]. 
 
2.3. Frequency modulation energy based VAD 
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Fig. 3. Different energy contours of a speech sample corrupted by 
0 dB click noise; (a) noisy speech waveform; (b) spectrogram; (c) 
energy contour; (d) frequency modulation energy contours from 
the three parameter settings. 
 
In this section, a VAD algorithm is proposed based on the energy 
of the frequency modulation of harmonics. To reduce the 
computational load of the proposed VAD, only a pair of spectro-
temporal modulation filters, including one tuned to the upward 
direction and the other one tuned to the downward direction, are 
considered in our algorithm. Three settings of (ωc, c)  {(1 Hz, 
5 ms), (2 Hz, 5 ms), (4 Hz, 5 ms)} are compared in our 
evaluations. The bandwidth of the selected c = 5 ms constant-Q 
filter (Q3dB = 2) actually covers 3 to 8 ms, which accounts for the 
normal harmonic spacing (pitch) range of adult speakers. The 
Fourier magnitude spectrogram is obtained by STFT using a 20-ms 
Hanning window with a 10-ms shift. The energy of a certain 
frequency modulation of harmonics at the time instant it  is then 

derived by 

1 1( ) max{ ( 4 , ; ), ( 4 , ; )}
c

i c i c iFME t E Hz t E Hz t


           (6) 

The frame-by-frame contour FME(t) basically depicts the energies 
of valid speech frequency modulation structures from our spectro-
temporal analysis. Fig. 3(a) presents a sample speech waveform 
corrupted by keyboard click noises with 0 dB SNR. Fig. 3(b) is the 
corresponding spectrogram. The regular energy contour and our 
proposed frequency modulation energy contours of the three 
settings are depicted in Fig. 3(c) and Fig. 3(d) respectively. All the 
contours are normalized by their maximum values for display 
purpose. The speech event is directly determined every 10 ms by 
comparing the frequency modulation energy with an adaptive 
threshold. 

To obtain the initial threshold, the FME(t)  is sorted and 
divided into 250-ms sections. The section with the lowest value is 
defined as FMEN(t) and assumed a noise-only section. The section 
with the highest value is defined as FMES+N(t)  and assumed a 
speech-plus-noise section. The initial threshold is then calculated 
by  

0 { [ ( )] [ ( )]} [ ( )]S N N NM FME t M FME t M FME t           (7) 

where [ ]M   is the mean function and  is a scaling parameter. The 
n-th frame of FME(t) of the input signal is compared with the 
threshold 1n  . If the ( )FME t n  is larger than the threshold, the  
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Fig. 4. ROC curves of the proposed VAD for two SNR levels and 
three noise types; (a) white noise; (b) wind noise; (c) computer 
keyboard click noise. 
 
current frame is labeled as a speech frame and the threshold is not 
adjusted. If the current frame is labeled as a non-speech frame, the 
threshold is updated by integrating temp and the previous threshold 

1n   with a smoothing factor  as in (8). 

1

1

(1 )  for non-speech frame n

                         otherwise

n temp

n

n

  







  


          (8) 

The temporary threshold temp  is calculated from FME of the past 

25 candidates of speech frames (stored as FMES+N(t)) and non-
speech frames (stored as FMEN(t)) as in (7). 
 

3. EVALUATION AND RESULTS 
 
We conducted a series of experiments to evaluate the proposed 
VAD. We used the TIMIT test set corpus, which contains 1680 
phonetically continuous sentences spoken by 168 speakers (112 
male and 56 female speakers) from eight different American 
dialect regions, in the first part of our evaluations. An average 2-
second silence was added to the beginning and the end of each 
sentence. And as in [19], any less-than-200ms short pause between 
words was treated as speech. The overall test materials consisted of 
38.14% speech and 61.86% non-speech segments, which is close 
to the active percentage in a typical telephone conversation [20]. In 
our experiments, noisy signals were generated by adding white, 
wind and computer keyboard click noises at two SNR levels (10 
dB and 0 dB). The desired SNR levels were ensured during speech 
segments. 
        The performance of the proposed VAD was assessed using 
the speech hit rate (H1) and the non-speech hit rate (H0). The 
speech/non-speech hit rate was defined as the ratio of the number 
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Table 1: DSR recognition rates (%) using different VADs 
 Non-speech 

interference 
Speech-like 
interference 

 office, street, 
field_c, field_w 

restaurant, bus 

Hand-labeled 76.25 56.5 
G.729 52.5 23.25 
AMR1 55 30 
AMR2 60 30 

CT_VAD 55 26.5 
Proposed 68.75 47.5 
 

of correctly detected frames to the total number of speech/non-
speech frames. The proposed VAD was compared with several 
standard VADs, the ITU G.729 Annex B (G.729B) [1], the ETSI 
AMR option 1 and option 2 (AMR1 and AMR2) [2]. In our 
experiments, the parameter  was set as from 0.05 to 0.45 with a 
0.05 step and the parameter was chosen from {0.8, 0.9, 0.98}. 
The  = 0.98 setting produced the highest VAD accuracy in terms 
of either H1 or H0. Fig. 4 shows the receiver operating 
characteristic (ROC) curves of the proposed VAD ( = 0.98) with 
respect to  for two SNR levels (left: 10 dB; right: 0 dB) and three 
noise types (top: white noise; middle: wind noise; bottom: click 
noise). The ROC points of three standard VADs are also given in 
the figure. A higher  results in a higher adaptive threshold such 
that the H1 is decreased and the H0 is increased. The AMR2 VAD 
performs the best among the three standards in white noise but 
neither one of them performs well in non-stationary wind and click 
noises. Our proposed VAD delivers much higher performance than 
those standard VADs in wind and click noises and comparable 
performance as AMR2 in white noise. 

Next, the proposed VAD was evaluated in a pilot simulation 
using a practical DSR system. The on-line DSR system was 
developed by Chunghwa Telecom Co. for mobile-phone users to 
automatically search the telephone number of a target institute. The 
database contains around 60000 telephone numbers of companies 
and government organizations in northern Taiwan. In our 
evaluations, we collected 10 10-second recordings in each of the 
six real environments, including office, street, field_c, field_w, 
restaurant and bus, through 2G and 3G communication networks. 
The field_c and field_w refer to the field environments with strong 
mobile-phone keypad click noise and wind noise. There were 120 
test utterances in total and five VADs, including G.729, AMR1, 
AMR2, CT_VAD (the original VAD in the DSR system) and our 
proposed VAD, were evaluated. The parameters (, , , ) of the 
proposed VAD were set as (1, 5, 0.98, 0.25). The six test 
environments can be further divided into two categories: 
environments with non-speech or speech-like inferences. The 
corresponding average recognition rates (in %) are given in Table 
1 with the upper bound from hand-labeled VAD results. Clearly, 
our proposed VAD outperforms all other VADs in terms of the 
recognition rate when used in the DSR system.  
 

4. CONCLUSION AND DISCUSSIONS 
 
In this paper, we propose a voice activity detection algorithm based 
on spectro-temporal modulation contents of the input sound. 
Prominent structures of the input sound can be captured by the 
spectro-temporal modulation decomposition. In our algorithm, a 
specific frequency modulation of moving harmonics is assessed 
and compared with an adaptive threshold to distinguish speech 

from non-speech. Although harmonic-related features intuitively 
can only account for vowels, surrounding consonants are still 
covered due to the low rate filter, which acts as a long term 
integrator. The ROC curves and recognition rates of the DSR 
system demonstrate our VAD significantly outperforms standard 
VADs under non-stationary noise conditions. Because the spectro-
temporal modulation analysis works on the Fourier spectrogram, 
the VAD can be easily integrated into conventional speech 
processing applications.  

Just like in any VADs, the trade-off between the speech hit 
rate (H1) and the non-speech hit rate (H0) is inevitable in our 
algorithm. The decision parameter  can be set differently based on 
the application on hand. In the future, we will extend our algorithm 
to deal with more difficult tasks, such as facing interferences with 
harmonic structures (for example, sounds from music instruments 
or animal calls), by carefully re-designing and selecting 
modulation filters with a more complicated decision mechanism. 
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