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ABSTRACT
Recently, an unsupervised, data clustering algorithm based on
maximum margin, i.e. support vector machine (SVM) was re-
ported. The maximum margin clustering (MMC) algorithm
was later applied to the problem of voice activity detection,
however, the application did not allow for real-time detection
which is important in speech processing applications. In this
paper, we propose a voice activity detector (VAD) based on a
sliding window, MMC algorithm which allows for real-time
detection. Our system requires a separate initialization stage
which imposes an initial detection delay, however, once ini-
tialized the system can operate in real-time. Using TIMIT
speech under several NOISEX-92 noise backgrounds at vari-
ous SNRs, we show that our average speech and non-speech
hit rates are better than state-of-the-art VADs.

Index Terms— Speech analysis, classification algorithms

1. INTRODUCTION

A voice activity detector (VAD) classifies an audio segment
as to whether it contains speech or not. VADs are ubiqui-
tous in many applications such as speech codecs [in order
to reduce bandwidth by coding non-speech with fewer bits
(if any)], hands-free telephony (in order to reduce acoustic
echo by only activating the microphone during speech), and
speech recognition (in order to improve accuracy by ignoring
all non-speech segments) [1]. The challenge in VAD design
is accurate classification in the presence of strong noise back-
grounds.

A block diagram of the basic VAD is shown in Figure
1 where sn is the signal segment, xn is the feature vector
extracted from sn, and yn is the associated binary decision
or label—either +1 (speech) or −1 (non-speech). The fea-
ture extraction stage computes discriminating features such
as frequency-band energies or segment statistics [2, 3]. The
classification stage may be based on heuristics, statistics, or
pattern recognition based approaches [4].

Finally, the decision smoothing stage uses prior classi-
fied segments to produce a final decision regarding the cur-
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Fig. 1. Block diagram of a voice activity detector. The deci-
sion smoothing stage is also called a “hang-over” stage.

rent segment, thus improving robustness against misclassifi-
cations, i.e. a speech segment is classified as not speech or
vice-versa. Misclassifications often occur at the beginning or
ending of the word due to low speech levels being dominated
by noise. Decision smoothing is also known as “hang-over”
and is typically present in all VADs [5].

One popular VAD, proposed by Sohn, et. al., is based
on spectral features which are assumed to be normally-
distributed and a likelihood ratio test [3]. In addition, an
initial non-speech segment is assumed in order to estimate
distributional parameters and then subsequent, classified seg-
ments are used to update the distribution parameters. Sohn’s
VAD also employs a novel Hidden Markov Model (HMM)
based hang-over scheme [3].

The ITU G.729B speech coding standard specifies a VAD
which is often used in VAD performance evaluations [6]. The
ITU G.729B VAD uses four features: full and low-band frame
energies, line spectral frequencies (LSFs), and zero cross-
ing rate (ZCR) [6]. Running averages of the feature vec-
tors are calculated and the characteristic energies of the back-
ground noise. Difference measures are compared between
features extracted from the current frame to the running av-
erages. Classification is then based on a majority vote given
by the averages using different features.

The ETSI AMR speech coding standard specifies two
VADs: option 1 (in AMR-1) and option 2 (in AMR-2) [5].
The AMR-1 VAD separates the audio signal into different fre-
quency bands and detects pitch and tone features present in
the subbands. As in ITU G.729B, running averages of these
features are computed and the decision is based on differ-
ences between current features and the averages. The AMR-2
VAD uses subband energy and power spectral density (PSD)
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features. The subband energy in a current frame is compared
to long-term energy estimates and a decision is made based
on the SNR difference measure. Running estimates of the
background noise are computed based on the deviation of the
PSD in order to provide an adaptive measure of the SNR [5].

Ying et. al. proposed a VAD based on an unsupervised
learning framework [2]. This VAD uses features based on the
energy distribution in Mel-scale frequency bands and a se-
quential Gaussian Mixture Model (SGMM) [2]. The SGMM
is trained using an unsupervised learning process, whereby
the initial frames were clustered into two Gaussian compo-
nents, with the distribution with the lowest mean modeling
non-speech frames and the distribution with the higher mean
modeling speech frames. The distributions were used to de-
termine a decision threshold for the classifier [2]. The VAD
classifies the frame as speech or non-speech at each subband
and the subband decisions are used to determine the final de-
cision through a voting procedure. Using performance mea-
surements of speech hit rate (proportion of correct speech seg-
ment classifications) and non-speech hit rate (proportion of
correct non-speech segment classifications), Kola et. al. [7],
provides average results using the NOISEX-92 noise corpus
using various state-of-the-art VADs. These results are shown
in Table 1 where we see that Ying’s VAD, when averaged over
the various noise signals and SNRs, is better than other VADs.

Table 1. Voice activity detector performance measured by
average of speech and non-speech hit rates for NOISEX-92
noise signals [7].

SNR dB Ying’s AMR2 Sohn’s ITU AMR1
−12 0.48 0.27 0.41 0.31 0.52
−3 0.64 0.60 0.55 0.40 0.53

0 0.68 0.69 0.60 0.51 0.51
3 0.71 0.74 0.65 0.56 0.50
6 0.75 0.76 0.70 0.60 0.50

12 0.81 0.78 0.76 0.66 0.50
18 0.85 0.79 0.80 0.71 0.52

Average 0.70 0.66 0.64 0.53 0.51

Wu et. al. proposed a VAD based on maximum margin
clustering (MMC) of speech and non-speech feature vectors
[8]. Through the use of MMC, this VAD obtains a support
vector machine (SVM) model for speech and classifies signal
segments accordingly. However, in Wu’s approach, feature
vectors from the pre-recorded signal are required to construct
the SVM and hence does not allow for real-time detection
which is important in speech processing applications.

In this paper, we propose a MMC-based VAD which uti-
lizes a sliding window in order to provide real-time opera-
tion. The sliding window approach not only solves the SVM
initialization problem but also the problem of cluster updat-

ing in a dynamic noise environment which Wu’s VAD does
not address. Although the proposed sliding-window, MMC
VAD suffers from an initial delay (1.25s in our implementa-
tion), the initial delay does not affect incoming signal seg-
ments after 1.25s and hence can operate in real-time. As we
will demonstrate, our proposed VAD has higher average ac-
curacy than Ying’s VAD which in turn has been shown to out-
perform the reviewed VADs including Sohn’s, ITU G.729B,
ETSI AMR option-1, ETSI AMR option-2 [7].

This paper is organized as follows. In Section 2, we re-
view maximum margin clustering as proposed in [9] and de-
scribe a sliding window approach to MMC. In Section 3, we
provide details for the proposed VAD based on the sliding
window, MMC including hang-over stages and feature buffer
management necessary for the proposed VAD. In Section 4,
we describe the simulations and results. Finally, in Section 5,
we conclude the paper.

2. SLIDING WINDOW, MAXIMUM MARGIN
CLUSTERING

MMC seeks to assign class labels y ∈ {+1,−1} to data
points x1,x2, . . . ,xN such that the separation or margin be-
tween the two data clusters is maximized [9]. The MMC al-
gorithm with label-generation, begins by randomly assigning
+1 labels to half of the data points and −1 labels to the other
half [10]. A SVM is constructed using the labeled data and
the “most-violated” data point, i.e. the +1 labeled point which
lies furtherest from the margin on the −1 side of the hyper-
plane or vice versa is relabeled to the other class [9]. The pro-
cess of SVM construction and identification and relabeling
of the most-violated data point is then repeated until conver-
gence of the cluster membership. Alternately, a fixed number
of iterations can be used or some other convergence criteria.

In the adaptation of the MMC algorithm for real-time
voice activity detection, we use a sliding window of feature
vectors as the data set. The sliding window consists of the
current and past M − 1 feature vectors, allowing for the
classification of the current signal segment. For each incom-
ing feature vector, the MMC algorithm is performed using
a balance constraint of zero and the maximum number of
iterations of 100. The number feature vectors, M used within
the sliding window affects accuracy and the initial delay.

3. VOICE ACTIVITY DETECTOR BASED ON
SLIDING WINDOW, MMC

3.1. Overview

The design of the proposed VAD is illustrated in Figure 2 and
is composed of six stages: feature extraction, initialization,
classification, hang-over 1, hang-over 2, and feature vector
buffer (FVB) management. The initialization and hang-over 1
stages are used once at system startup and then for subsequent
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Fig. 2. Diagram of proposed sliding window, MMC VAD.
For the first M feature vectors, x1, . . . ,xM the initialization
and hang-over 1 stages are in effect. Once these initial feature
vectors are processed, classification and hang-over 2 stages
are in effect for n > M .

operation, the current feature vector classification and hang-
over 2 stages are used in place.

3.2. Feature Extraction Stage

As in Ying’s VAD, the proposed VAD uses logarithmic, Mel-
weighted power spectrum (LMWPS) coefficients as feature
elements [2]. The power spectrum is computed from 0-8000
Hz using a 20 ms Hamming-windowed segment with 50%
overlap and a 12-channel, Mel-scale filterbank. The 12-
coefficients are separated into three groups and each group is
summed leading to a 3-D feature vector. We have investigated
varying the number of groups but had the best results using
three [11].

3.3. Initialization Stage

In order to initialize the system, we first extract M feature
vectors, x1, . . . ,xM and apply the MMC algorithm to obtain
associated class labels y1, . . . , yM . Since we assume the first
signal segment is non-speech, if x1 is labeled +1 we change
all +1 labels to −1 and vice-versa; otherwise we make no la-
bel change. We have investigated performance with different
values for M and have found that M = 125 had the best re-
sults [11]. The initialization of the clusters imposes a 1.25s
startup delay before the first speech/non-speech decisions are
made but thereafter, decisions are made in real-time.

3.4. Hang-over Stages

The hang-over 1 stage for the proposed VAD uses a modified
version of the ETSI AMR-2 VAD’s hang-over scheme [2]. In
this stage, the feature vector labels y1, . . . , yM resulting from
initialization may be changed based on hang-over parameters.
The modification is to allow the possibility of all M class la-
bels to be changed. Initial hang-over parameters are the same
as in [2] with the exception of setting the hang-over counter
parameter to 13 [11].

The hang-over 2 stage is also based on the ETSI AMR-2
VAD’s hang-over scheme and carries over the current coun-
ters from the hang-over 1 stage beginning with xM+1. How-
ever, unlike hang-over 1, only the current label resulting from
the classification stage (see below) may be changed.

3.5. Feature Vector Buffer Management Stage

In order to achieve accurate classification with MMC, the
data should be roughly balanced among the two classes. We
have implemented a buffer management algorithm in order to
maintain this balance. The FVB management stage performs
the tasks of permanently storing x1 (reference non-speech fea-
ture vector), balancing the M feature vectors used by MMC,
and ensuring at least M/2 most recent feature vectors are in
the buffer. The non-speech counter used in the hang-over 2
stage is initialized to one (because of x1) and is incremented
or decremented based on decision changes produced by the
hang-over 2 stage, thus allowing a the M/2 speech features
to be present within the FVB. The FVB management algo-
rithm is presented in Algorithm 1.

Algorithm 1 Feature vector buffer management stage
1: buffer(1) = x1

2: if nonSpeechCounter < M/2 then
3: buffer(i) = buffer(i+ 1), i = 1, 2, . . . ,M − 1
4: buffer(M+1) = xn (current feature vector)
5: else
6: buffer(i) = buffer(i+1), i = M/2,M/2+1, . . . ,M−1
7: buffer(M+1) = xn (current feature vector)
8: end if

3.6. Classification Stage

In order to classify the current feature vector, xn we apply
the MMC algorithm to the data in the FVB to obtain M +
1 associated class labels. Since we assume the first buffer
element, x1 is non-speech, if x1 is labeled +1 we change all
+1 labels to −1 and vice-versa; otherwise we make no label
change.

4. SIMULATIONS AND RESULTS

4.1. Corpora and Performance Measures

In order to evaluate the proposed VAD, we used the TIMIT
corpus (284 speakers chosen at random from 630) and the
NOISEX-92 corpus for various noise signals (speech babble,
Volvo vehicle, and white) [12, 13]. Speech was mixed with
noise at various SNRs for the simulation. We used speech,
non-speech, and average hit rates to evaluate performance
[4, 14]. As discussed in Section 1, researchers have recently
conducted a study of various state-of-the-art VADs where it
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Table 2. Speech, non-speech, and average hit rates for pro-
posed VAD and Ying’s VAD under clean speech. The pro-
posed VAD is calibrated to matched Ying’s VAD results under
clean speech prior to evaluating under noisy speech.

VAD Speech Non-speech Average
Hit Rate Hit Rate Hit Rate

Proposed 0.94 0.76 0.85
Ying’s 0.94 0.75 0.85

is shown that Ying’s VAD on average outperforms others [7].
Therefore, we compare our VAD only to Ying’s VAD.

We implemented Ying’s VAD according to [2] using rec-
ommended parameters and compared performance to that
reported in [7]. We adjusted parameters on the proposed
VAD to calibrate the speech/non-speech hit rates using clean
TIMIT speech before evaluating under noisy speech. The re-
sults are shown in Table 2 where we see that the performance
of the proposed VAD and Ying’s VAD using clean speech
signals have virtually the same hit rates. The results reveal
that both VADs favor a higher speech hit rate resulting in a
lower non-speech hit rate.

4.2. Results

For white noise, speech babble, and Volvo noise backgrounds
tables 3-5, give the speech, non-speech, and average hit rates
for the proposed VAD based on the sliding window, MMC
algorithm and Ying’s VAD. For the white noise background,
we find that the proposed VAD has higher speech hit rates
across all SNRs as well as average hit rates slightly lower at
low SNRs but higher at higher SNRs as compared to Ying’s.
For the speech babble background, we find results which are
similar to the white noise results. Finally, for the Volvo noise,
we find that the proposed VAD has higher speech hit rates
across SNRs than Ying’s as well as higher average hit rate
performance. We find similar results for the other NOISEX-
92 noise signals (F-16, factory, and pink) [11].

Table 3. Speech, non-speech, and average hit rates for pro-
posed VAD based on the sliding window MMC algorithm
(cols. 2, 4, 6) and Ying’s VAD (cols. 3, 5, 7) with white noise.

SNR Speech Non-speech Average
(dB) Hit Rate Hit Rate Hit Rate
−10 0.99 0.82 0.06 0.23 0.52 0.53
−5 0.97 0.82 0.10 0.29 0.54 0.55

0 0.97 0.78 0.29 0.41 0.63 0.59
5 0.87 0.72 0.59 0.59 0.73 0.65

10 0.84 0.67 0.75 0.76 0.80 0.72

Table 4. Speech, non-speech, and average hit rates for pro-
posed VAD based on the sliding window MMC algorithm
(cols. 2, 4, 6) and Ying’s VAD (cols. 3, 5, 7) with speech
babble background.

SNR Speech Non-speech Average
(dB) Hit Rate Hit Rate Hit Rate
−10 0.78 0.70 0.20 0.31 0.49 0.51
−5 0.79 0.71 0.23 0.36 0.50 0.53

0 0.80 0.71 0.31 0.42 0.56 0.57
5 0.82 0.73 0.45 0.51 0.63 0.62

10 0.84 0.75 0.61 0.63 0.73 0.69

Table 5. Speech, non-speech, and average hit rates for pro-
posed VAD based on the sliding window MMC algorithm
(cols. 2, 4, 6) and Ying’s VAD (cols. 3, 5, 7) with Volvo noise.

SNR Speech Non-speech Average
(dB) Hit Rate Hit Rate Hit Rate
−10 0.84 0.70 0.70 0.70 0.77 0.70
−5 0.85 0.72 0.79 0.81 0.82 0.76

0 0.88 0.76 0.80 0.86 0.84 0.81
5 0.90 0.80 0.79 0.87 0.85 0.84

10 0.91 0.84 0.78 0.86 0.85 0.85

4.3. Remarks

Due to the iterative nature of the MMC algorithm, the compu-
tational complexity is greater than that of other VADs. There
are several ways that the complexity may be reduced with
only a small reduction in performance. These include reduc-
ing the maximum number of iterations, reducing the window
size, and advancing the sliding window by more than one
sample. It is difficult to compare computational complexity of
the proposed VAD with other VADs since these analyses are
not found in the literature. However, informal benchmarking
on a standard PC revealed slightly more processing time than
Ying’s VAD.

5. CONCLUSIONS

We have proposed a voice activity detector (VAD) based on
a sliding window of feature vectors and a maximum margin
clustering (MMC) algorithm. The use of the sliding win-
dow allows the proposed VAD to be used in real-time speech
processing applications unlike a previously-proposed VAD
which also used MMC. The proposed VAD was compared
to Ying’s sequential Gaussian Mixture Model (SGMM) VAD
using NOISEX-92 signals at various SNRs and was shown to
have higher average speech and non-speech hit rates.
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