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ABSTRACT 

 
We develop and present a novel deep convolutional neural network 

architecture, where heterogeneous pooling is used to provide 

constrained frequency-shift invariance in the speech spectrogram 

while minimizing speech-class confusion induced by such 

invariance. The design of the pooling layer is guided by domain 

knowledge about how speech classes would change when formant 

frequencies are modified. The convolution and heterogeneous-

pooling layers are followed by a fully connected multi-layer neural 

network to form a deep architecture interfaced to an HMM for 

continuous speech recognition.  During training, all layers of this 

entire deep net are regularized using a variant of the “dropout” 

technique. Experimental evaluation demonstrates the effectiveness 

of both heterogeneous pooling and dropout regularization. On the 

TIMIT phonetic recognition task, we have achieved an 18.7% 

phone error rate, lowest on this standard task reported in the 

literature with a single system and with no use of information 

about speaker identity. Preliminary experiments on large 

vocabulary speech recognition in a voice search task also show 

error rate reduction using heterogeneous pooling in the deep 

convolutional neural network. 

 
Index Terms— convolution, heterogeneous pooling, deep, 

neural network, invariance, discrimination, formants 

 

1. INTRODUCTION 
 

The deep neural network (DNN) is an emerging technology that 

has recently demonstrated dramatic success in speech feature 

extraction and recognition, scaling very well from small 

[8][26][27][28] to medium [3][4][19][36] and to large [2][6][17] 

[21][34][32][37] tasks. (For recent reviews on the use of neural 

networks in speech recognition, see [29][17]). Some related DNN 

architectures have also demonstrated effectiveness in speech 

understanding and (small scale) image recognition tasks [7][9][35]. 

For larger scale image recognition and computer vision with high 

variability, a convolutional structure is often needed. Incorporation 

of convolution and subsequent pooling into a neural network gives 

rise to a Convolutional Neural Network (CNN) [24][25]. Stacking 

a CNN with a fully connected DNN or with one or more CNNs 

gives rise to a deep CNN [1][22][23]. The deep CNN has been 

shown to achieve a strong success for image recognition [5][22], 

similar to the success achieved by the DNN on speech recognition. 

     For images, the convolutional structure followed by pooling in a 

CNN is a natural way to embed translation invariance --- an object 

can be located at different places in an image while maintaining the 

same class identity of the object. However, for speech that is 

represented as a 2D “image” or spectrogram over time and 

frequency, things are different. This is because the same spectral 

pattern that is present in separate frequency bands (or at different 

temporal locations) would mean a different sound class. In other 

words, the simple convolution-pooling operation in the CNN, 

while introducing “translation” invariability either in frequency (or 

in time or in both), would cause confusion among speech classes 

and reduce the discrimination ability. This fundamental difference 

between the image and speech tasks motivated us to analyze the 

error patterns of phonetic recognition obtained by the deep CNN 

architectures typically used for image classification, and to design 

a new architecture, the heterogeneous-pooling CNN or HP-CNN.  

     Like image recognition, it is also desirable to derive invariant 

features by normalizing and reducing the variability in acoustic 

patterns --- e.g., the frequency shift due to vocal tract differences 

across speakers or due to the contextual effects on the formant-

frequency changes [10][11] --- associated with the same speech 

class. However, the challenge is to strike the right balance between 

the extent of invariance (via convolution/pooling) and possible 

speech-class confusion when the shift becomes too large. The HP-

CNN described in this paper is aimed at achieving such a tradeoff.  

       This paper is organized as follows. In Section 2, we provide 

motivations for the development of the HP-CNN based on error 

analysis on the results of a CNN with a fixed or homogeneous 

pooling size for all convolutional feature maps. Details of the HP-

CNN are described in Section 3, highlighting the new set of hyper-

parameters not present in any previous CNN and the principles by 

which they are determined. The roles of domain knowledge of 

speech are discussed. Section 4 is devoted to describing the 

“dropout” technique recently published in [18], which we modified 

and used to regularize the HP-CNN and the higher-layer fully-

connected DNN used in our experiments. Experimental evaluation 

of the HP-CNN-DNN and dropout technique is presented in 

Section 5, reporting the best result in the literature on the standard 

TIMIT phone recognition task. We discuss related work in Section 

6 and conclude the paper in Section 7. 

 

2.  EFFECTS OF CNN’S POOLING SIZE ON 

PHONETIC CONFUSION 
To achieve the intended invariance to limited frequency shift via 

convolution and pooling (while retaining the discrimination 

ability), we use (scaled) filter-banks or spectrograms as the input 

feature for the CNN. Compared with MFCCs which have been 

most popular for speech recognition, spectrogram features not only 

retain more information (despite possibly redundant or irrelevant 

information for the recognition task), but also enable the use of the 

convolution and pooling operations to represent some typical 
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speech invariance and variability expressed explicitly in the 

frequency domain. An example of such speech variability is 

formant undershooting (or overshooting) caused by casual (or 

forced) speaking styles that have been mathematically represented 

by hidden dynamic or trajectory models of speech [11][12][13] 

[14]. 

     As a baseline, we first explored a primitive CNN studied in [1], 

where the pooling size was fixed across all different convolutional 

feature maps. A larger pooling size enforces a greater degree of 

invariance in frequency shift but this also carries greater risk of 

being unable to distinguish among different speech sounds with 

similar formant frequencies. We have conducted detailed error 

analysis on the effects of the CNN’s pooling size. When a fixed 

pooling size increases from one to 12, we found increasing 

confusions among the phones whose major formant frequencies are 

close to each other; in the meantime, the discrimination among 

phones whose formant frequencies are at extreme values tends to 

improve. This observation and analysis motivated the development 

of a new type of pooling strategy in DNNs, which we describe 

below. 

 

3. HETEROGENEOUS POOLING IN THE CNN 
The basic CNN structure we use has the following three 

characteristics: 1) input locality: We learn a set of filters, each of 

which receives the input from a local range of frequencies; 2) 

weight sharing: Each filter shifts along the frequency axis while 

computing the output with tied filter weights (this is 

mathematically equivalent to the ubiquitous convolution operation 

in DSP); and 3) max pooling or sub-sampling: High-level features 

with lower resolution are produced by the CNN. A combination of 

these characteristics endows the CNN with invariant properties for 

the input acoustic patterns that shift along the frequency axis. The 

extent to which the invariance is represented depends on the 

crucial parameter of the pooling size associated with 3) above. 

      We have extensively explored the use of a fixed pooling size 

for all convolutional layers corresponding to a full set of feature 

maps. As discussed in Section 2, any given pooling size 

corresponds to a tradeoff between the desired invariance over a 

range of frequency shift and the undesirable phonetic confusion 

caused by having similar but distinct phones’ formants fall within 

the range. A natural way to take advantage of this tradeoff to the 

benefit of overall phonetic discrimination is to apply different or 

heterogeneous pooling sizes to various subsets of the full feature 

maps. We call this type of CNN as Heterogeneous-Pooling CNN, 

or HP-CNN. Figure 1 illustrates an HP-CNN, with two sets of 

pooling sizes, P1 (of value 2) and P2 (of value 3) shown, 

corresponding to N1 and N2 maps, respectively, in the convolution 

layer.  

     In general, the number of different pooling sizes can be much 

larger than two, constrained by the total number of feature maps. A 

general HP-CNN(m) is characterized by the following hyper-

parameter set: [P1, N1; P2, N2;  … ,  Pm, Nm]. This gives the total 

number of feature maps in the convolutional layer:   ∑   
 
   . 

     The optimal choice of the above hyper-parameters’ values is 

determined by the convolution filter design and, more importantly, 

by the nature of the phonetic space expressed in scaled frequency 

in accordance with the input filter-bank features. For example, for 

highly fluent speech with a faster speaking rate, the formant space 

of speech acoustics tends to shrink [11][31]. Thus, a larger number 

   ) of feature maps, which gives more presentational power 

analogous to more hidden units in the fully-connected DNN, 

should be given to lower pooling size    in order to bias the 

tradeoff towards a lesser degree of invariance and a higher degree 

of discrimination. This type of domain knowledge on speech 

acoustics has been incorporated into the design of hyper-parameter 

values in our experiments reported in Section 5.  
 

 
Figure 1. Illustration of convolution and heterogeneous-pooling layers in a 

HP-CNN, followed by a fully connected DNN (not shown here). Note the 

different columns represent separate feature maps corresponding to the 

same input vector, not separate time frames. 

     

     The HP-CNN described above effectively converts the 

spectrogram features of speech into a higher-level representation at 

the heterogeneous pooling layer. This HP-CNN output, which is 

equipped with partial within-class invariance, is followed by a 

subsequent fully-connected DNN to form a deep-CNN architecture 

that can be used for speech recognition after an interface to an 

HMM in the same manner as described in [3][4][26].  
 

4. REGULARIZING HP-CNN BY “DROPOUT” 
Recently, a regularization procedure called “dropout” [18] 

significantly improved image recognition and phone recognition 

accuracy by randomly omitting half of the hidden units in each 

layer of a DNN during training while doubling the size of each 

layer. During run time, the effect is efficiently compensated by 

scaling down the DNN weights. This regularization mechanism 

lies in its ability to prevent “co-adaptation” in which a feature 

detector is only helpful in the context of other feature detectors. 

Like different hidden units in a DNN which tend to co-adapt each 

other, different feature maps and different hidden units within the 

same map in the HP-CNN also co-adapt. Hence, the HP-CNN is 

expected to benefit from the dropout technique for its 

regularization. Due to the weight constraints in the convolution 

layer and the heterogeneous nature of the pooling layer in the HP-

CNN, co-adaptation among the hidden units within and across 

feature maps in the HP-CNN would behave differently from those 

in the DNN. Our experimental results in Section 5 have shown 

more significant improvement in phone recognition accuracy than 

reported in [18] on the same task of phone recognition. 

     In contrast to applying dropout for the DNN in the TIMIT task 

as reported in [18], we found that applying dropout to input filter-

bank features for the HP-CNN has not been effective. Therefore, 

we apply dropout only to the hidden units in the deep HP-CNN, 

including those in both the convolution and pooling layers, as well 

as in all the DNN layers on top of the HP-CNN’s pooling layer.  
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 Further, in contrast to [18], we found that the dropout rate for 

both the HP-CNN and DNN needs to be significantly smaller than 

0.5 reported in [18] in order to make it effective in achieving low 

recognition errors. Too large a dropout rate not only drastically 

slows down the convergence in training but also leads to higher 

recognition errors despite increases in the number of hidden units 

as suggested in [18]. A typical effective value of the dropout rate is 

between 0.05 and 0.25 for the deep HP-CNN with N=100 (the size 

of the convolutional feature maps) and with 2000 hidden units per 

layer in the DNN on top of the HP-CNN. 

 

5. EXPERIMENTAL EVALUATION 
 

5.1. Experimental setup and HP-CNN-DNN training 
Reported in this paper are mainly the results of TIMIT’s standard 

phonetic recognition task as used in [1][12][27][26][28][33]. 

Speech feature vectors are generated by a Fourier-transform-based 

filter-bank, and include 40 coefficients distributed on a Mel scale, 

plus their first and second temporal derivatives. Standard setups 

are used, and in particular, we report the 39-folded-class results of 

phonetic recognition using the 192 core test set sentences. The 

targets of 183 mono-phone states are obtained by using a tri-phone 

HMM model to generate state-level forced alignments. No phone 

segment information provided in the TIMIT database is used.  

      The training objective is the standard, frame-level cross-

entropy, simpler than the full-sequence objective in our earlier 

work [27]. For training the HP-CNN followed by a DNN with 

three fully-connected hidden layers (HP-CNN-DNN), we find near 

perfect correlation between the frame error rate and the objective, 

as shown in Figure 2.  

 
Figure 2. Frame error rate vs. cross entropy during training HP-CNN 

followed by a DNN with three fully connected layers. Cross entropy is the 

objective function for optimization, correlating well with training error rate.  

 

5.2. Phonetic recognition results 
     In Table 1, we summarize the phone recognition error rates for 

several deep networks, including the HP-CNN-DNN with and 

without using dropout regularization. Note that with a fixed 

pooling size P in CNN-DNN, the error rates vary substantially 

from P=1 to P=12, and P=6 gives the lowest error rate. The HP-

CNN-DNN uses a distributed P from 1 to m=12, and gives 

significantly lower errors. The HP-CNN-DNN with dropout 

regularization achieves the lowest published error rate of 18.7% on 

this same task. We note that in [33] the same 18.7% error rate was 

reported by exploiting multiple systems and using additional 

information about speaker identity for adaptation. Our single deep 

HP-CNN-DNN system does not make use of any information 

about speaker identity as in the standard evaluation protocol. All 

the CNNs shown in Table 1 have the same structure (e.g., the same 

number of convolutional feature maps) except for the differences 

in the pooling layer. 

For the HP-CNN-DNN configuration which produced the lowest 

error rate, we plot the learning curve (for the training error rate) in 

blue and phone recognition accuracy for the development (dev) or 

validation set (in red) and test set (in green) in Figure 3. The 

stopping criterion is determined solely by the behavior in the dev 

set, following the same procedure as described in [26]. In Figure 4, 

we show the confusion matrix of 39 merged-phone classes after 

dynamic programming based decoding. Further, we present in 

Figure 5 the normalized values of the diagonal elements in the 

confusion matrix (i.e., correct phone recognition) for several deep 

networks in Table 1, including the best-performing one (in light 

blue). Publications of such detailed results are expected to benefit 

future research into more advanced techniques. (Related error 

analysis was performed in comparing DNN and hidden trajectory 

systems in 2009, which ignited further research into DNN; see 

[15][16]).  

Deep Networks Phone Error Rate 

DNN (fully connected) 22.3% 

CNN-DNN; P=1 21.8% 

CNN-DNN; P=12        20.8% 

CNN-DNN; P=6 (fixed P, optimal)                   20.4% 

CNN-DNN; P=6 (add dropout) 19.9% 

CNN-DNN; P=1:m (HP, m=12) 19.3% 

CNN-DNN; above  (add dropout) 18.7%  

   Table 1: TIMIT core test set phone recognition error rate comparisons. 

    

 
Figure 3. Frame error rate in training (blue) and phone recognition 

accuracy of dev set (red) and core test set (green) as a function of training 

epochs. 

Our more recent, preliminary experiments extending the TIMIT 

task to large vocabulary speech recognition in a voice search task 

have shown error rate reduction from 32.4% to 30.1% after 

incorporating heterogeneous pooling in the otherwise identical 

deep CNN system. 

6. RELATION TO OTHER WORK 
The work presented in this paper has focused on the motivation 

and construction of the HP-CNN. This network makes a flexible 

tradeoff between invariance of speech patterns expressed in the 

frequency domain and discrimination of speech classes. The earlier 

work of [1] adopted fixed or homogeneous pooling, lacking such 

flexibility.   

     While the present study is related to recent work on image 

recognition where “tiled” CNN was proposed [23], they differ 

from each other in two main aspects. In the tiled CNN, weights are 

shared over the entire image. Hence the total number of different 

sets of weights depends on the tile size. The HP-CNN reported in 

this paper uses local weight sharing appropriate for speech, and it 

uses completely different sets of filters for each pooling node. 
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Further, the design of the pooling takes into account discrimination 

of classes in the HP-CNN, not so in the tiled CNN. 

The dropout regularization technique used in this work is a 

variant of that published in [18]. The main difference is that we 

apply dropout in both the convolution and fully-connected layers 

while the original dropout technique [18] was applied to only the 

fully-connected layers. Experimentally we found that the best 

dropout rate is between 0.05 to 0.25 for the typical size of the 

network, and [18] reported only the results with the dropout rate of 

0.5 incurring much longer training time (reflected by many more 

training epochs) than ours. 

One major motivation of the HP-CNN is to handle the acoustic 

variability in frequency, in common with the feature normalization 

technique exploited in [28]. The key difference is that our method 

integrates such variability normalization and speech class 

discrimination into a single framework in learning, while the study 

of [28] separates out feature normalization and the deep net 

learning. We report much stronger results than [28] on the same 

evaluation task.   

7. SUMMARY AND DISCUSSION 
In the work reported in this paper, we have developed a novel deep 

learning architecture, an HP-CNN followed by a DNN. We 

motivate the HP-CNN by domain knowledge of speech pertaining 

to the phonetic space expressed in the formant-frequency 

distributions among distinct phonemes, as well as to how the 

phonetic space would shrink as the speaking style becomes more 

casual. The HP-CNN is also motivated by the error analysis carried 

out on the behavior of CNNs with a varying but fixed pooling size 

across all convolutional features maps. We use a weighted mix of 

pooling sizes in the HP-CNN to devise a strategy for trading 

between within-class invariance and between-class discrimination. 

This strategy reduces the TIMIT core test set’s phone recognition 

error rate to 19.3% from 20.4% obtained with the optimal but 

single fixed pooling size. After regularizing the CNN using a 

variant of the “dropout” technique, the error rate of the HP-CNN-

DNN drops further to 18.7%, from 19.9% with the same dropout 

but without heterogeneous pooling. Note that all the error analysis 

and domain knowledge of speech leading to the fundamental 

concept of the HP-CNN have been based on the invariance-vs.-

discrimination interpretation of the convolution and pooling 

operations in the CNN.  All this has been made possible only after 

a change from the use of MFCCs to spectrogram-like features, 

supporting the basic tenet of deep learning: back to more primitive 

features while letting machine learning to automatically discover 

the appropriate high-level features. 

     We are currently extending the application of the HP-CNN-

DNN to larger, real-world tasks, where we expect a greater need 

for trading invariance with confusion due to the freer speaking 

style and hence stronger shrinking in the phonetic space. 

  

 
Figure 4. Phone confusion matrix (including Deletion and Insertion) in core test set produced by HTK’s HResults tool for the standard 39-class phonetic 
recognition task of TIMIT.

  

 
 

Figure 5. Phone classification accuracy for each of the 39 merged classes in the TIMIT core test set for five different pooling and training methods. The last 

one (marked with P=1:12 Dout) uses dropout regularization during training. 
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