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ABSTRACT
We investigate back-propagation based sequence training of
Context-Dependent Deep-Neural-Network HMMs, or CD-
DNN-HMMs, for conversational speech transcription.

Theoretically, sequence training integrates with back-
propagation in a straight-forward manner. However, we find
that to get reasonable results, heuristics are needed that point
to a problem with lattice sparseness: The model must be
adjusted to the updated numerator lattices by additional itera-
tions of frame-based cross-entropy (CE) training; and to avoid
distortions from “runaway” models, we can either add arti-
ficial silence arcs to the denominator lattices, or smooth the
sequence objective with the frame-based one (F-smoothing).

With the 309h Switchboard training set, the MMI objec-
tive achieves a relative word-error rate reduction of 11–15%
over CE for matched test sets, and 10–17% for mismatched
ones. This includes gains of 4–7% from realigned CE itera-
tions. The BMMI and sMBR objectives gain less. With 2000h
of data, gains are 2–9% after realigned CE iterations. Using
GPGPUs, MMI is about 70% slower than CE training.

1. INTRODUCTION AND RELATED WORK

In this paper, we investigate the use of back-propagation for
word-lattice based sequence training of context-dependent
deep-neural-network HMMs, or CD-DNN-HMM. CD-DNN-
HMMs [1, 2] achieve significant accuracy improvements
over discriminatively trained GMM-HMMs, such as 16%
on a business-search task [1, 2], and up to one-third on the
Switchboard phone-call transcription benchmark [3], These
CD-DNN-HMMs were trained with error back-propagation
[4] using the frame-based cross-entropy (CE) objective.

Sequence training seeks to better match the MAP decision
rule of LVCSR decoding by considering sequence constraints
from HMMs, dictionary, and the language model. For GMM-
HMMs, sequence training (there called “discriminative train-
ing”) often yields relative error reductions around 10% over
maximum-likelihood training (e.g., see [5]).

MMI sequence training with DNNs was first reported in
[6], where a 5% relative gain over CE on the TIMIT cor-
pus was achieved. For lattice-based DNN sequence training,
[7] reports an excellent 17% gain on Switchboard from us-
ing the sMBR criterion with the second-order Hessian-free
method [8], for a 5-hidden layer CD-DNN-HMM. Using
back-propagation instead, [7] reports a 14% gain on a 50h

set. [9] reports a 1% relative gain with MMI on voice search
and Youtube videos for a 4-hidden layer CD-DNN-HMM
trained on much larger sets of 6000 and 1400h, respectively.
For sequence training of single-hidden-layer networks, re-
ported gains include 24% using factored triphones [10], and
up to 19% for a CD-ANN-HMM [11].

This paper investigates in more depth the use of back-
propagation for lattice-based sequence training on a corpus of
a few hundred hours, specifically the 309h Switchboard cor-
pus. To use popular objective functions like MMI or sMBR
with back-propagation, one “only” needs to cut in an addi-
tional processing step that replaces the top layer’s error signal
by expressions very similar to extended-Baum-Welch equa-
tions for GMMs, while making full use of the existing back-
propagation machinery, as laid out by [11].

In practice, however, this proves a beast—several heuris-
tics are needed to get reasonable results. After introducing
the CD-DNN-HMM in section 2, section 3 discusses possible
reasons and remedies to address the problem to some degree.
Section 4 describes our efficient GPGPU-based implementa-
tion, and section 5 presents experimental results.

2. THE CONTEXT-DEPENDENT
DEEP-NEURAL-NETWORK HMM

2.1. Context-Dependent Deep Neural Network

A deep neural network (DNN) is a conventional multi-layer
perceptron (MLP [12]) with many layers, where training is
commonly initialized by a pretraining algorithm [2]. A CD-
DNN-HMM models the posterior probability P (s|o) of a tied
triphone state, or senone s [11, 1], given an observation vector
o. As a brief recap, it is a stack of (L+1) layers of log-linear
models of the form P (h`|v`) = 1/Z` exp((W `)T v` + a`)
with layer-type specific partition functions Z`, weight matri-
ces W ` and bias vectors a` (the model parameters to train),
and v` and h` denoting the input and output of each layer.

For hidden layers, the components of h` are assumed bi-
nary and conditionally independent, such that P (h`|v`) has
the form of a component-wise sigmoid. With the “mean-field
approximation” [14], the expected value of h` is used as the
input to the next layer: v`+1 def

= E{h`|v`}. For the output
layer, hL is a unit vector with the position of the 1 denoting
the senone s: P (s|o) = P (hLs = 1|vL). This constraint
gives rise to the form of softmax. For details, see, e.g., [13].
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Following [15], for decoding and lattice generation, the
senone posteriors are converted into the HMM’s emission
likelihoods by dividing by the senone priors P (s):

log p(o|s) = logP (s|o) − logP (s) + log p(o) (1)

where the observation vectors o are acoustic feature vec-
tors augmented with neighbor frames. p(o) is unknown but
can be ignored as it cancels out in best-path decisions and
word-posterior computation. Likewise, we can ignore ZL in
P (s|o), which is a significant time-saver since it allows for
on-demand computation in decoding.

CD-DNN-HMMs can be trained with the stochastic-
gradient method error back-propagation (BP) [4] (typically
after initialization by pre-training [16, 13]). Of the gradient
terms, whose detailed formulas can be found e.g. in [13], the
term of relevance here is the top layer’s “error signal:”

es(r, t) =
∂F

∂ logP (s|or(t))

where F is short for F(W 0, a0, ...,WL, aL), the objective
function to maximize over all training utterances’ frames
Or = (or(1), or(2), ..., or(t), ...), and r is the utterance index.

2.2. Frame-Discriminative Training

To train CD-DNN-HMMs, one commonly maximizes the to-
tal log posterior probability over training frames or(t) given
ground-truth senone labels ŝr(t) [15]. This is also known as
the cross-entropy (CE) criterion (with Kronecker delta δ):

FCE =
∑
r

∑
t

logP (ŝr(t)|or(t)), (2)

eCE
s (r, t) = δs,ŝr(t) − P (s|or(t)) (3)

2.3. Sequence Training

Sequence training incorporates HMM, lexical, and some
language-model constraints of the actual MAP decision rule.
Popular sequence objectives, known from GMM systems,
are maximum mutual information1 (MMI), boosted MMI
(BMMI, [17]), and minimum Bayes risk (MBR [18, 19]):

FMMI =
∑
r

logP (Ŝr|Or) (4)

FBMMI =
∑
r

log
P (Ŝr|Or) · e−b·Ar(Ŝr)∑
S P (S|Or) · e−b·A

r(S)
(5)

FMBR =
∑
r

∑
S

P (S|Or) · Ar(S) (6)

with path S = (s(1), s(2), ..., s(t), ...) denoting a senone se-
quence, Ŝr specifically being the ground-truth senone labels
of utterance r, accuracy functionAr(S), BMMI weight b, and
path posteriors P (S|Or) given the current model:

P (S|Or) =
pκ(Or|S)P (S)∑
S′ pκ(Or|S′)P (S′)

(7)

1Technically, the CE criterion is also MMI, applied to individual frames.

The acoustic likelihoods p(Or|S) =
∏
t p(o

r(t)|s(t)) are
computed using Eq. (1). The P (S) are path priors that com-
bine HMM transitions, lexicon, and LM. κ is the acoustic
weight. Our specific accuracy function Ar(S) is on senone
level (sMBR [23]), it counts correct senone labels in a path S
against ground truth Ŝr. The corresponding error signals are:

eMMI
s (r, t) = δs,ŝ(t) − γrs (t) (8)

eMBR
s (r, t) = κ γrs (t)

[
E{Ar(S)|s(t) = s} − E{Ar(S)}

]
with γrs (t) =

∑
S
δs(t),s P (S|Or)

Ar(S) =
∑
t

δs(t),ŝr(t)

E{Ar(S)|s(t) = s} =

∑
S δs(t),s P (S|Or) · Ar(S)∑

S δs(t),s P (S|Or)

and E{Ar(S)} likewise. eBMMI is the same as eMMI ex-
cept that γrs (t) is modified analogously to the change from
Eq. (4) to (5). These error signals are computed efficiently us-
ing forward-backward procedures (e.g. [5]). Thus, sequence-
training BP can reuse the existing CE BP machinery, just with
a modified computation of the error signal [11].

3. BP SEQUENCE TRAINING IN PRACTICE

So far the theory. In practice, however, we find that back-
propagation and lattice-based training are not made for each
other: WER initially improves as expected, but after only tens
of hours of data, it begins to decay, along with an increase of
deletions. The objective, however, keeps improving. We in-
vestigated a number of potential causes—all, one way or an-
other, related to the unavoidable sparseness of word lattices:
Even the fattest lattices that we could practically generate ref-
erence only about 300 senones per frame, out of 9304.

3.1. “Run-away” Silence Model

The growing deletions turn out to be speech-silence substi-
tutions, accompanied by a growth of the log-likelihoods of
silence (e.g. about 10%) that we don’t see for speech scores.

For sMBR, this issue disappears when using the known
heuristic of counting silence frames as “incorrect” in Ar [5].
For (B)MMI, a similar effect can be achieved by setting es(t)
to zero for all silence states and all silence frames. However,
we found that a slightly better approach is to augment the lat-
tice with artificial silence arcs (one for each start/end node
pair connected by a word arc, with an appropriate entering
probability, and preventing redundant silence paths by for-
bidding silence-to-silence transitions). The goal is to make
“run-away” silence visible to the objective function.

3.2. Smoothing for “Run-away” Speech Models
This cannot be easily extended to non-silence. An alternative
way of making “run-away” models visible is to use a form of
H-criterion [20] that interpolates the sequence and frame ob-
jectives: FFSMMI = (1−H)FCE+HFMMI. This is inspired
by I-smoothing [5] and similar regularization approaches for

6665



Table 1. Results for MMI with BP for 309h and 2000h Switchboard models with 7 hidden layers (and GMM baselines) across
seven test sets. WERs in percent, relative change to reference (“ref”) in parentheses.

acoustic model Hub5’00 RT03S voicemails tele- executive
& training SWB FSH SW MS LDC conferences presentation
GMM-ML (309h) 26.1 (ref) 30.2 (ref) 40.9 (ref) 45.0 (ref) 33.5 (ref) 35.2 (ref) 18.2 (ref)
+ BMMI 23.6 (-10%) 27.4 (-9%) 37.6 (-8%) 42.4 (-6%) 30.8 (-8%) 33.9 (-4%) 18.4 (+1%)
DNN-CE (309h) 16.2 (ref) 19.6 (ref) 28.4 (ref) 34.5 (ref) 24.6 (ref) 26.5 (ref) 9.6 (ref)
+ CE update with numerator lattices 15.6 (-4%) 18.6 (-5%) 27.4 (-4%) 32.8 (-5%) 23.0 (-7%) 24.6 (-7%) 9.8 (+2%)
+ MMI (F/S ratio 1:9) 13.7 (-15%) 17.1 (-13%) 25.4 (-11%) 29.8 (-14%) 20.5 (-17%) 23.3 (-12%) 8.6 (-10%)
DNN-CE (2000h) + CE update 14.6 (ref) 16.0 (ref) 22.1 (ref) 32.1 (ref) 25.6 (ref) 22.5 (ref) 7.7 (ref)
+ MMI (F/S ratio 1:4) 13.3 (-9%) 14.6 (-9%) 20.2 (-9%) 31.4 (-2%) 24.5 (-4%) 21.4 (-4%) 7.4 (-4%)

adaptation [21, 22]. We want to call it “frame smoothing,” or
F-smoothing. We find frame/sequence ratios of 1:4 to 1:10
highly effective. We also experimented with L2 regulariza-
tion, but did not find it to help.

3.3. Effect of Realignment

Sequence training operates on numerator and denominator
lattices generated with an initial CE model. In our system,
“numerator lattice” is just another term for the ground-truth
state alignment. In [1, 3], we showed that re-alignment fol-
lowed by further CE iterations leads to notable WER gains
(0.6 points for SWBD). I.e., the initial CE model is subop-
timal for the lattices generated with it, so a sequence train-
ing started with that model (as in [11, 7]) will have to rectify
this mismatch (in addition to the change of training objective)
while being constrained by sparse lattices. To remedy this,
we propose to first perform further CE iterations using the
updated numerator lattices before entering sequence training.

4. EFFICIENT IMPLEMENTATION WITH GPGPUS

[7] did not “test stochastic gradient descent sMBR train-
ing [for Switchboard] because the experiment would have
taken too long.” Indeed, our initial CPU-side implementation
increased runtime 12-fold. However, we achieve signifi-
cant speed-ups through parallelized execution on a GPGPU
(NVidia Tesla). Each arc is processed as a separate CUDA
thread. This is straight-forward for acoustic-score computa-
tion. However, the lattice-level forward-backward processing
must be decomposed into sequential, dependency-free CUDA
launches. E.g., for a 7.5-second lattice with 211,846 arcs and
6974 nodes, we have 106 dependency-free node regions
(=launches) at an average of 1999 arcs (=threads per launch).

Lattice forward/backward and error-signal accumulation
require atomic summation of probabilities represented as log-
arithms. We emulate this through CUDA’s atomic “compare-
and-swap” instruction. It is critical to shuffle operations into a
random-like order, in order to reduce target-operand clashes.

With this, reading the randomized lattice chunks from the
network now takes up nearly 40% of the total runtime. Using

Table 2. MMI vs. CE training runtime for 24h of data.
CE +MMI vs. +MMI +parallel

(GPGPU) (CPU) (GPGPU) read-ahead
training time 70 min 14.5h 2.75h 2h
increase - 12.4× 2.4× +71%

a parallel read-ahead thread reduces that to zero.
Table 2 summarizes the runtimes. Compared to CE train-

ing, the overall runtime increases by about 70%, with fat lat-
tices of nearly 500 arcs per frame.

5. EXPERIMENTAL RESULTS

We evaluate mini-batch BP sequence training on speech-to-
text transcription using the 309-hour Switchboard-I training
set [24]. The GMM-HMM baseline has 40 mixtures per state
and is trained with maximum likelihood (ML) and BMMI.
The CD-DNN-HMM has 7 hidden layers of dimension 2048.
The number of senones is 9304 for both. The data for system
development is the 1831-segment SWB part of the NIST 2000
Hub5 evaluation set. All recognition is speaker independent.

5.1. Core Results

Table 1 shows the main results for several test sets. The row
labeled “DNN-CE” shows the CE-trained Switchboard base-
line. This model was then used to generate numerator and
denominator lattices. As mentioned in Section 3.3, we need
to adjust the model to the updated numerators by 7 additional
CE data passes (computed parallel to lattice generation). Row
“+CE update with numerator lattices” shows that this yields
gains of 4% or more for all but one set.

The row labeled “+MMI” shows WERs obtained with the
F-smoothed MMI objective (Sec. 3.2) at a frame/sequence ra-
tio of 1:9. We used a fixed learning rate of 1/128,000 per
frame. On the well-matched Hub5 set, WER is reduced from
16.2% to 13.7%, a total 15% relative reduction. A quarter of
this is due to the CE update.2 For comparison, [7] reports a
17% gain using Hessian-free optimization for a very similar
setup (without explicit CE update, though). Unlike [7], we
did not see gains from tuning LM weight or word penalty.

Lattice generation used the testing dictionary; the training
set’s out-of-vocabulary rate is 16%. If we use the training dic-
tionary instead, the Hub5’00 WER increases by about 0.2%

2The CE WERs differ from our earlier reports [3, 13] due to a bug in
error counting: Our spelling of the interjection word “um-hmm” was missing
in the NIST error-counting tool’s text-normalization table. The 16.2% for
DNN-CE (309h) on Hub5’00 SWB had formerly been reported as 17.1%.

Table 3. Effect of objective function. Shown are WERs in %.
WER CE MMI + F/S BMMI + F/S sMBR
Hub5’00-SWB 16.2 13.7 (-15%) 14.0 (-14%) 14.7 (-9%)
RT03S-FSH 19.6 17.1 (-13%) 17.4 (-11%) 17.8 (-9%)
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Table 4. Effect of extra CE update using numerator lattices.
CE training MMI w/ lattices from M

w/ alignment and initial model...
model M from M ...CE ...CE×2
GMM 16.2 (ref)→ CE 15.8 (-2%) –
CE 15.6 (-4%)→ CE×2 14.1 (-13%) 13.7 (-15%)
CE×2 15.7 (-3%) – 13.5 (-17%)

points. The numerator lattices were merged into the denomi-
nator lattices arc-by-arc in both setups.

The other six test sets in Table 1 cover a range of accura-
cies and difficulty levels: the Spring’03 NIST rich transcrip-
tion set (RT03S), two voicemail corpora, internal teleconfer-
ences, and an 17-minute rehearsal of a company executive’s
presentation [25]. Relative gains from MMI range from 10 to
17%, with 4 to 7% due to the CE update alone. Those gains
are somewhat consistent with the GMM model’s gains from
BMMI on these sets (second row).

In all cases, the model was trained for 6 data passes. We
observe a slight tendency for over-training: After 8 additional
data passes, the WER for Hub5’00 SWB reduces further, from
13.7 to 13.2%, while the other sets get worse by similar mar-
gins. In Table 1, for each of the seven test sets, we picked the
optimal number of MMI data passes by averaging the relative
MMI gains for the respective other six test sets in the table,
which worked out to 6 data passes in each case.

Finally, the last section of Table 1 shows results for 2000h
of training data. The F/S ratio here had to be increased to 1:4
to avert decay. The 2000h model uses more senones (18k),
which aggravates the sparseness effect. The 2000h CE base-
line had already undergone several re-alignments in its train-
ing recipe. Considering that, the relative gains are nearly the
same as for 309h for the matched Hub5 and RT03S sets, while
only about half of that for the mismatched ones.

Table 3 compares the three sequence criteria for the dev
set and RT03S (FSH portion). Unlike others (e.g. [11]), we do
not seem to benefit from BMMI or sMBR compared to MMI.

5.2. Training: Realignment and Randomization

Table 4 shows the impact of the additional CE update after
lattice generation (Sec. 3.3). The row labelled “CE” shows
that when entering MMI training with the same CE model
that was used to generate the lattices, we see a relative WER
gain of 13%, compared to 15% if we start MMI with model
“CE×2” that has undergone an additional CE update on the
realigned numerator lattices. I.e., the CE model is suboptimal
w.r.t. the lattices, and MMI BP fails to rectify that. Generat-
ing lattices with CE×2 (last row) increases the gain to 17%.
The first table row shows that lattices generated with the seed
GMM model are not suitable for DNN MMI training.

In all results in this paper, individual frames are presented
to BP in random order for CE training; while in sequence
training, randomization units are entire utterances. Table 5
shows (on a slightly different setup) that for CE training, ut-

Table 5. Impact of randomization on CE training.
randomization unit: frame utterance

training-set frame accuracy 55.1% 52.0%
WER [%] (Hub5’00-SWB) 16.6 17.7 (+7%)

Table 6. Experiments on WER decay. Shown are WERs in %.
modeling Number of data passes
technique 1 2 3 4 5
DNN-CE 16.2
+ CE update w/ numer. lattices 15.6
+ MMI, plain 17.2 24.2
+ no silence frame/state update 14.3 14.5 14.6 14.9 15.3
vs. + augment silence arcs 14.4 14.3 14.4 14.7 15.1

+ regenerated lattices ↪→ 14.3 14.3 14.2 14.3
vs. + F-smoothing (F/S ratio 1:9) 13.9 13.7 13.8 13.6 13.8

terance randomization degrades WER by 7%, which indicates
opportunities for further gains by better randomization. The
batch-based Hessian-free method [7, 8] has no such issue.

5.3. Experiments on WER Decay

Table 6 shows the WER decay behavior over the first five data
passes for the heuristics described in Sec. 3. The row labeled
“MMI, plain” shows that the plain MMI criterion of Eq. (4)
without heuristics quickly drives to a drastic accuracy drop.
The MMI objective kept improving, though. Reducing the
learning rate can slow it but not solve it.

Either technique of Sec. 3.1, “no silence frame/ state up-
date” or “augment silence arcs,” substantially slows down
the problem, confirming the “run-away” silence hypothesis.
Silence-arc augmentation works slightly better. Regenerat-
ing the lattices after one data pass (next row) yet again slows
down the effect, but not as effectively as F-smoothing, which
eliminates the decay problem and finally leads to good results.

6. CONCLUSION
Back-propagation sequence training of CD-DNN-HMMs is
attractive due to its mathematical simplicity. It can be effi-
ciently implemented with GPGPUs (about 70% slower than
cross-entropy), although it is overall slower and less scalable
than second-order batch methods [7].

However, on the Switchboard corpus, we observe severe
over-training like issues: After an initial significant gain,
WERs begin to decay—while the objective keeps increasing.
We have shown that this is largely due to the unavoidable
sparseness of lattices: The vast majority of senones is unseen
most of the time in the lattices due to pruning. Inappropriate
increases of their scores remain mostly invisible to the ob-
jective function and do not get appropriately corrected—with
increasing negative impact as the model moves away from the
original model used to generate the lattices. We suspect that
this is particularly harmful for stochastic gradient methods
that rely on quick error feedback.

We developed three heuristics to work around the lattice-
sparseness issue: separating the problem of initial lattice/model
mismatch from the objective-function change by inserting
a CE update on the numerator lattices before entering the
sequence-training iterations; augmenting the lattices with ar-
tificial silence edges; and F-smoothing. The latter two aim at
making “run-away” models visible to the objective function.

With these, we observe up to 17% relative WER gains,
which is competitive with the best known results for 2nd-
order methods. F-smoothed MMI is also effective when in-
creasing the training data from 300 to 2000h hours of speech.
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hamoo, “An Inequality for Rational Functions with Ap-
plications to Some Statistical Estimation Problems,” IEEE
Trans. Information Theory, Vol. 37, pp. 107–113, 1991.

[21] D. Albesano, R. Gemello, P. Laface, F. Mana, and S. Scanzio,
“Adaptation of Artificial Neural Networks Avoiding Catas-
trophic Forgetting,” International Joint Conference on Neural
Networks, 2006.

[22] D. Yu, K. Yao, H. Su, G. Li, and F. Seide, “KL-Divergence
Regularized Deep Neural Network Adaptation For Improved
Large Vocabulary Speech Recognition,” ICASSP 2013.

[23] J. Zheng and A. Stolcke, “Improved Discriminative Training
Using Phone Lattices,” Eurospeech, 2005.

[24] J. Godfrey and E. Holliman, “Switchboard-1 Release 2,” Lin-
guistic Data Consortium, Philadelphia, 1997.

[25] R. Rashid, “Microsoft Research shows a promising new break-
through in speech translation technology,” http://blogs.technet.
com, Nov. 2012.

[26] J. Fiscus et al., “2000 NIST Evaluation of Conversational
Speech Recognition over the Telephone: English and Man-
darin Performance Results,” from http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.27.5417.

6668


