
ASYNCHRONOUS STOCHASTIC GRADIENT DESCENT FOR DNN TRAINING

Shanshan Zhang, Ce Zhang, Zhao You, Rong Zheng, Bo Xu

Interactive Digital Media Technology Research Center
Institute of Automation, Chinese Academy of Sciences, Beijing, China
{shanshan.zhang, ce.zhang, zhao.you, rong.zheng, xubo}@ia.ac.cn

ABSTRACT

It is well known that state-of-the-art speech recognition systems
using deep neural network (DNN) can greatly improve the system
performance compared with conventional GMM-HMM. However,
what we have to pay correspondingly is the immense training cost
due to the enormous parameters of DNN. Unfortunately, it is difficult
to achieve parallelization of the minibatch-based back-propagation
(BP) algorithm used in DNN training because of the frequent model
updates.

In this paper we describe an effective approach to achieve an
approximation of BP — asynchronous stochastic gradient descent
(ASGD), which is used to parallelize computing on multi-GPU. This
approach manages multiple GPUs to work asynchronously to calcu-
late gradients and update the global model parameters. Experimental
results show that it achieves a 3.2 times speed-up on 4 GPUs than the
single one, without any recognition performance loss.

Index Terms— deep neural network, speech recognition, asyn-
chronous SGD, GPU parallelization

1. INTRODUCTION

The recently introduced speech recognition systems using DNN
have become state-of-the-art technique in speech recognition [1, 2].
In this technique, conventional GMM is replaced by a deep artifi-
cial neural network, where the initialization is done layer-by-layer
individually using unsupervised pre-training followed by BP based
fine-tuning on the entire network [3, 2]. However, the outstanding
performance of DNN accompanies with a major roadblock — the
immense computational cost. It becomes the bottleneck of DNN
training as the network depth and width increases.

In conventional GMM-HMM training, parallelization is easy to
be implemented by using multi-thread techniques because each ut-
terance can be processed independently. Conversely, it is difficult to
achieve parallelization of BP training due to that it involves a full
model update after each calculation. Splitting training data direct-
ly like Baum-Welch training of GMM-HMM does not work under
this condition. Thus, how to utilize multiple GPUs efficiently on one
DNN model is the critical issue to speed up the training process.

In this work, we introduce ASGD to the DNN training on multi-
GPU cards. Each GPU card (works as a client) computes data gra-
dient on the latest model independently, and updates the model in
the server asynchronously. It is an approximation of BP because it
updates the model with delayed data.

The following issues become popular: firstly, BP is based on
minibatch (hundreds of frames calculated at the same time), thus the

This work is supported by Beijing Natural Science Foundation(No.
4132071), National Nature Science Foundation of China(No. 61202326) and
Tsinghua - Tencent Joint Laboratory for Internet Innovation Technology.

size of minibatch is a vital factor for system performance and effi-
ciency. Secondly, due to the enormous parameters of DNN, there is
a great data communication between clients (GPU cards) and serv-
er at each calculation, which is a challenge to the bus bandwidth.
However, if making a balance between minibatch size and update
frequency, we can obtain a system works well on both performance
and efficiency.

The outline of this paper is as follows: Section 2 describes the
skeleton of DNN used in speech recognition and critical factors in
the training. Section 3 investigates the concept of ASGD and how
to apply it on multi-GPU parallelization of DNN training specifical-
ly. Section 4 describes experimental results and discussions. The
paper is concluded in Section 5. Finally, we give the discussions on
relation to prior work in Section 6.

2. THEORETICAL BACKGROUND

This section recaps the structure of DNN used in speech recogni-
tion systems and the SGD strategy in BP training. Analysis of the
minibatch size are also given in this section to put forward the paral-
lelization problem in BP training.

2.1. Deep neural network used in speech recognition

Figure 1 shows the structure of DNN used in speech recognition
systems, which is also called multi-layer perceptron (MLP) [4].

output layer

input layer

h2

h1

hl

…

 ……

 ……

 ……

 ……

 ……

W1

Wl+1

W2

Fig. 1. Deep neural network used in speech recognition systems

Commonly, the bottom layer of network is input layer, the mid-
layers are hidden layers, and the top layer is output layer. The term
deep in DNN means the multiple hidden layers in the network. As
commonly used in speech recognition systems, the number of hidden

6660978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

layers is often 5, 7 or more. Each hidden layer consists of hidden
units with a few thousands (e.g. 2048), and the output layer with
much more (e.g. 10k). We choose sigmoid function as the activation
function of all hidden units in DNN, and softmax function as the
activation function of output layer units.

Consider a DNN model with L hidden layers, K units for input
layer, M for output layer, and N for hidden layers, then the total
weight parameters number is (K ·N + (L− 1) ·N2 +N ·M). Let
K = 400, L = 5,M = 10k,N = 2048 (larger in practice usually),
this number tends to be in the order of 108, which is a root cause of
parallelization problem.

The forward propagation in the network can be viewed as the
probability calculation in speech recognition, and the training is
done by the well known BP algorithm [5].

2.2. Stochastic gradient descent

The simplest way to find a local minimum is to take steps propor-
tional to the negative gradient of the function at the current point,
called gradient descent, so that

W (τ+1) =W (τ) − η∇E
(
W (τ)

)
(1)

where τ is the model version, η is the learning rate, W is the model
parameter and E is the error function. This batch method makes use
of the whole dataset to calculate the gradient∇E, but for highly non-
linear models and large datasets, it turns out to be a poor algorithm.

An on-line version of gradient descent called stochastic gradient
descent (SGD) has proved to be useful in practice for training on
large datasets. It calculates the error function gradient∇En based on
minibatch of data sampled randomly from training dataset, instead
of on the whole dataset [6] and then updates the model based on one
minibatch, so that

E (W) =

N∑
n=1

En (W) (2)

W (τ+1) =W (τ) − η∇En
(
W (τ)

)
(3)

whereN is the number of minibatches. The algorithm of minibatch-
based SGD is shown in Algorithm 1.

Comparing with the batch methods, SGD has a higher proba-
bility of escaping from local minima and handles redundancy in the
data much more efficiently. That’s why we use SGD in the DNN
training. On the other hand, what follows the use of minibatch is
the parallelization problem of training. SGD involves a full model
update after each calculation of a minibatch. Worse still, the number
of model parameters is enormous as discussed in Section 2.1.

Algorithm 1 Stochastic Gradient Descent
Require: η > 0

1: for i in iterations do
2: for n in mini-batches do
3: ∇En ← calculate gradient of En on model W (τ)

4: W (τ+1) ←W (τ) − η∇En
(
W (τ)

)
5: τ ← τ + 1
6: end for
7: end for

64 128 256 512 1024 2048 4096
0

20

40

60

80

100

120

140

160

10.0%

15.0%

20.0%

25.0%

30.0%

Mini-batch size

T
ra
in
in
g
ti
m
e
[s
ec
s/
ep
o
ch
]

P
h
o
n
e
erro

r
ra
te

5 hidden layer PER 7 hidden layer PER

5 hidden layer training time 7 hidden layer training time

Fig. 2. Training times and phone error rates according to different
minibatch sizes and numbers of hidden layers on the TIMIT corpus

2.3. Analysis of minibatch size

To deal with the problem mentioned above, an obvious solution is
to increase the size of minibatch, but it does not work in practice.
Figure 2 shows training times and corresponding phone error rates
on the TIMIT corpus1 with the same 1024 hidden units but different
hidden layers and minibatch sizes. Experiments show that the size of
minibatch influences both the training time and performance signifi-
cantly. Undersized minibatch (extremely, down to 1) will slow down
the training due to the poor utilization of GPU computation units,
while oversized minibatch will degrade the performance. Moreover,
training tends to diverge with oversized minibatch (error rates in-
crease obviously for size T = 2048 and T = 4096 in Figure 2).

In fact, increasing minibatch size means calculating more frames
at the same time, which will speed up training theoretically, and it
is true w.r.t. small minibatch size. But for larger size, the upper
bound is limited by the number of computation units in GPU. If the
minibatch size is larger than the number of computation units, GPU
would have to calculate this minibatch in multiple phases. The only
difference is that there are less model updates, which contributes
little to speed up training but degrades performance significantly. It
is what we are reluctant to see.

3. ASYNCHRONOUS SGD STRATEGY

In this section, we focus on investigating ASGD and applying it on
multi-GPU parallelization for DNN training specifically. As dis-
cussed in Section 2.2 and 2.3, the real parallelization of BP training
is prohibitive and increasing minibatch size also does not work.

3.1. Asynchronous SGD

As described in [8], ASGD works well on fully distributed datasets,
and makes the learned model available to all participating nodes.
The model is gradually evolved as it is exposed to random records
from the training dataset. A proof about the convergence of ASGD
is given in [9].

While the ASGD algorithm described in [8] is designed to work
on peer-to-peer (P2P) system, we develop it to adapt to our server-
clients system. It can be implemented based on any learning algo-
rithm that utilizes the SGD approach. The skeleton of ASGD algo-
rithm we propose is shown in Algorithm 2.

1A benchmark used widely for speech recognition with a small vocabu-
lary. For more details about TIMIT, we refer the readers to [7].

6661

Algorithm 2 Asynchronous Stochastic Gradient Descent
Require: Mutex, LoadModel(), UpdateModel()

1: Wserver ← LoadModel()
2: loop
3: Mutex.Lock()
4: X ← get next mini-batch
5: Wclient ← download Wserver

6: Mutex.Unlock()
7: if X is empty then
8: exit
9: end if

10: gclient ← calculate gradient based on X and Wclient

11: gserver ← upload gclient
12: Mutex.Lock()
13: Wserver ← UpdateModel(Wserver , gserver)
14: Mutex.Unlock()
15: end loop

3.2. ASGD applied on multi-GPU

To accelerate training procedures, ASGD is applied for training
DNN on multiple GPU cards in a server. The architecture of our
approach is shown in Figure 3. Each GPU works as a client, and
performs the loop described in Algorithm 2.

In the beginning, the model is initialized by CPU and stored
in server, then the model training on multi-GPU starts. Step 1 in
Figure 3 means that GPU requests a minibatch from training cor-
pus which is guaranteed by the mutex locking protocol. And step 2
shows getting the current model (e.g. modeli) from server’s memory
(If the current model is being updated, then waits and retries). Hav-
ing received the data and model, GPU calculates the gradient based
on minibatch as described in Algorithm 1 (step 3). Subsequently it
transmits the gradient back to the server as step 4 shows to update
the current model (not modeli usually, because it may be updated
by other clients already). The model updating procedure is executed
by CPU, and these steps are repeated by each GPU until all the data
is processed.

Current Model

Training corpus

GPU

Card

4#

GPU

Card

3#

GPU

Card

2#

GPU

Card

1#

1

3

2
4

Fig. 3. ASGD applied on multi-GPU cards in a server

3.3. Why ASGD works

As discussed in Section 2.3, increasing minibatch size directly does-
n’t work in speeding up the training, but ASGD does. Accounting

for this, let us consider calculating an oversized minibatch on multi-
GPU by splitting the training data. For that, let k denote the num-
ber of GPUs, and kT the size of minibatch, thus the sub-minibatch
calculated on each GPU is T . It seems that there are kT frames
processed simultaneously, but the obstacle followed is that all GPUs
need to send back gradients and the server must sum them up in or-
der to update model parameters, which is a big challenge to the bus
bandwidth of server. For the limitation of the data transmission rate,
transmission time take a large proportion of the whole processing
time. Thus the training slows down because the clients would wait
for each other.

For ASGD approach, this problem is addressed tactfully because
it manages multiple GPUs to work asynchronously. The number of
training frames seems to be same as discussed above, but the critical
difference is that each GPU works independently. Each GPU trans-
mits gradient/parameter and calculates gradient on its own schedule.
Hence, as a view of the whole system, data transmission and calcu-
lation are done simultaneously (one GPU may transmit gradient/pa-
rameter at the moment while others are calculating). Additionally, as
we will discuss in section 4.3, our ASGD approach is more flexible
in reducing the frequency of data transmission.

4. EXPERIMENTS

4.1. Configuration

As a baseline system which serves as the label generator at the frame
level, we first train a cross-word triphone GMM-HMM with maxi-
mum likelihood and maximum mutual information criteria, using
1000 hours Mandarin dataset. All experiments operate on a 42 di-
mension feature which is formed by 13-dimensional PLP and pitch
appended with the first and second order derivatives.

Our DNN is trained on a subset (about 130 hours) of above
dataset and is tuned by another 1 hour data as development set. Con-
catenations of 11 frames are used as input of our network which
contains other 5 hidden layers with 2048 units and an output layer
with 10217 senones.

The systems are evaluated on two individual test sets, namely
clean7k and noise360, which were collected through mobile micro-
phone under clean and noise environments, respectively.

Finally, NVIDIA GeForce GTX 690 is used for both pre-training
and fine-tuning.

4.2. Results

Table 1 compares the performances and costs of different speech
recognition systems. The first row shows results on the conventional
GMM-HMM baseline system, the second row shows results on our
DNN-HMM system trained by standard BP on single GPU, and the
last two rows show results on our proposed systems with ASGD s-
tarted from the fifth iteration of standard BP and used in the whole
training process, respectively. Training times on single GPU and
ASGD based multi-GPU(4 GPUs in a server) are given in the final
column. We adjust the size of minibatch during the whole training
process in order to get better convergence, with small size in early
iterations and larger size in later ones.

Comparing with GMM-HMM baseline system, DNN achieves
up to 30% reduction in terms of character error rate (CER). Apply-
ing ASGD on original DNN, slightly better results are achieved. Per-
formance is further improved as we adjust the learning rate afresh
(result shown in the last row of Table 1).

In term of the training time, for our best ASGD system, ASGD
achieves a 3.2 times speed up on 4 GPUs than the single one. We
believe that it is applicable in practice. Note that we apply different

6662

Table 1. System performances and training times in minutes per 10h
of data.

CER(%) Training Time
clean7K noise360 (minutes)

GMM bMMI 11.30 36.56 –
BP 9.27 26.99 195.1

ASGD from iter5 9.22 26.33 87.3
ASGD new start 9.05 25.98 61.1

minibatch sizes during training iterations. Experiments show that
the effect of ASGD is enhanced for larger minibatch, but weakened
for smaller one. This is due to smaller minibatch means more model
updates. As a result, the bandwidth limitation may account for it.
However, small minibatch (e.g. T = 256) is only used in the very
early iterations, thus it has no much impacts on the whole training
time. We tend to use larger minibatch when the parameters are close
to the optimum in order to reduce the training cost. So the fact that
ASGD works well on large minibatch is critical in our experiments.

4.3. Approximate solution

As discussed in Section 3, there are two times of data transmission
between server and each client (GPU card) in each model update
step, which incurs the problem of bandwidth. ASGD eases the band-
width burden between server and GPU cards. However, the limita-
tion of data transmission rate is found still to be the bottleneck of
training in our experiments. We address this problem by reducing
the frequency of data transmissions between server and clients, i.e.
updating model in client by its gradient every minibatch, but accu-
mulating updated gradients and sending them back to server every
3 mimibatches, then ask for a new model from server. Experiments
show that this approach does not degrade the performance but speeds
up training significantly (results of last two rows in Table 1 are ob-
tained under this approach).

A reasonable explanation may be given from the view of SGD.
Note that BP will get highest training accurancy if we use SGD
frame by frame (equivalent to minibatch size T = 1), without taking
training time into consideration. Minibatch-based SGD is an approx-
imation of this condition, because the model is updated with delayed
data of (T−1) frames. ASGD-based BP is also an approximation of
standard BP. Frames processed as a minibatch are sampled randomly
from the training corpus, thus updating model asynchronously with
delayed data does no harm on the performance.

5. CONCLUSION

In this paper, we have described an effective approach to speed up
DNN training for speech recognition. Since the real parallelization
of BP is prohibitive due to the sequential property of SGD, we ad-
dress this issue by applying ASGD as an approximation of BP. For
multiple GPUs on a single server, this approach manages multiple
GPUs to work asynchronously. Each GPU calculates gradients and
updates the global model parameters independently. Experimental
results show that it achieves a 3.2 times speed-up on 4 GPUs than
the single one, without any loss in terms of CER, which is an 80%
parallelization efficiency.

While extending our algorithm to multi-server multi-GPU ar-
chitecture, the network bandwidth becomes a new bottleneck which
hurts the system performance seriously. In the future work we will
mainly focus on data compression to reduce the data exchange a-
mong servers as well as GPUs.

6. RELATION TO PRIOR WORK

This paper focuses on addressing practical problems encountered in
DNN training. We introduce the concept of ASGD [8] as an approxi-
mation of BP to DNN training. While the ASGD algorithm proposed
in [8] is designed to work on P2P system, we develop it to adapt to
our server-clients system (each GPU card works as a client).

A similar work on speed acceleration is described in [10], which
approximates the parallelization on multiple GPUs by another ap-
proach — pipelined BP. Combining with model striping in the out-
put layer, it achieves a 3.3 times speed-up on 4 GPUs (slightly better
than ours). However, pipelined BP is constrained by the number of
hidden layers, and it works well on small minibatch but diverges for
larger [10]. On the contrary, ASGD works well on large minibatch
and is more suitable to extend to multi-server architecture.

7. ACKNOWLEDGEMENTS

The authors would like to thank Xiaorui Wang for a series of useful
advices and discussions.

8. REFERENCES

[1] F. Seide, G. Li, and D. Yu, “Conversational speech transcrip-
tion using context-dependent deep neural networks,” in Proc.
Interspeech, 2011.

[2] G.E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent
pre-trained deep neural networks for large-vocabulary speech
recognition,” Audio, Speech, and Language Processing, IEEE
Transactions on, vol. 20, no. 1, pp. 30–42, 2012.

[3] G.E. Hinton, S. Osindero, and Y.W. Teh, “A fast learning algo-
rithm for deep belief nets,” Neural computation, vol. 18, no. 7,
pp. 1527–1554, 2006.

[4] F. Rosenblatt, “Principles of neurodynamics. perceptrons and
the theory of brain mechanisms,” Tech. Rep., DTIC Document,
1961.

[5] G. Hinton D. Rumelhart and R. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, Oc-
t.1986.

[6] C.M. Bishop et al., Pattern recognition and machine learning,
vol. 4, NY:springer Science+Business Media, LLC, 2006.

[7] John S. Garofolo et al, TIMIT Acoustic-Phonetic Continu-
ous Speech Corpus, Linguistic Data Consortium, Philadelphia,
1993.

[8] Róbert Ormándi, István Hegedus, and Márk Jelasity, “Asyn-
chronous peer-to-peer data mining with stochastic gradient de-
scent,” in Euro-Par 2011 Parallel Processing, Emmanuel Jean-
not, Raymond Namyst, and Jean Roman, Eds., vol. 6852 of
Lecture Notes in Computer Science, pp. 528–540. Springer
Berlin Heidelberg, 2011.

[9] A. Nedić, D.P. Bertsekas, and V.S. Borkar, “Distributed asyn-
chronous incremental subgradient methods,” in Inherently Par-
allel Algorithms in Feasibility and Optimization and their Ap-
plications, Yair Censor Dan Butnariu and Simeon Reich, Eds.,
vol. 8 of Studies in Computational Mathematics, pp. 381 – 407.
Elsevier, 2001.

[10] X. Chen, A. Eversole, G. Li, D. Yu, and F. Seide, “Pipelined
back-propagation for context-dependent deep neural network-
s,” in Proc. Interspeech, 2012.

6663

