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ABSTRACT

While Deep Neural Networks (DNNs) have achieved tremen-
dous success for large vocabulary continuous speech recognition
(LVCSR) tasks, training of these networks is slow. One reason is that
DNNs are trained with a large number of training parameters (i.e.,
10-50 million). Because networks are trained with a large number
of output targets to achieve good performance, the majority of these
parameters are in the final weight layer. In this paper, we propose
a low-rank matrix factorization of the final weight layer. We apply
this low-rank technique to DNNs for both acoustic modeling and lan-
guage modeling. We show on three different LVCSR tasks ranging
between 50-400 hrs, that a low-rank factorization reduces the num-
ber of parameters of the network by 30-50%. This results in roughly
an equivalent reduction in training time, without a significant loss in
final recognition accuracy, compared to a full-rank representation.

Index Terms— Deep Neural Networks, Speech Recognition

1. INTRODUCTION

Deep Neural Networks (DNNs) have become popular in the speech
community over the last few years, showing significant gains over
state-of-the-art GMM/HMM systems on a wide variety of small and
large vocabulary tasks [1, 2, 3, 4]. However, one drawback of DNNs
is that training is very slow, in part because DNNs can have a much
larger number of parameters compared to GMMs [3, 4].

There have been a few attempts in the speech recognition com-
munity to reduce the number of parameters in the DNN without sig-
nificantly decreasing final recognition accuracy. One common ap-
proach, known as “sparsificiation” [3], is to zero out weights which
are close to zero. However, this reduces parameters after the net-
work architecture has been defined, and therefore does not have
any impact on training time. Second, convolutional neural networks
(CNNs) [5] have also been explored to reduce parameters of the net-
work, by sharing weights across both time and frequency dimensions
of the speech signal. However, experiments show that in speech
recognition, the best performance with CNNs can be achieved when
matching the number of parameters to a DNN [6], and therefore pa-
rameter reduction with CNNs does not always hold in speech tasks.

In this paper, we explore reducing parameters of the DNN before
training, such that overall training time is reduced but recognition ac-
curacy is not significantly increased. Typically in speech, DNNs are
trained with a large number of output targets (i.e., 2,000 - 10,000),
equal to the number of context-dependent states of a GMM/HMM
system, to achieve good recognition performance. Having a larger
number of output targets contributes significantly to the large num-
ber of parameters in the system, as over 50% of parameters in the
network can be contained in the final layer. Furthermore, few output
targets are actually active for a given input, and we hypothesize that

the output targets that are active are probably correlated (i.e. corre-
spond to a set of confusable context-dependent HMM states). The
last weight layer in the DNN is used to project the final hidden rep-
resentation to these output targets. Because few output targets are
active, we suspect that the last weight layer (i.e. matrix) has low
rank. If the matrix is low-rank, we can use factorization to represent
this matrix by two smaller matrices, thereby significantly reducing
the number of parameters in the network before training. Another
benefit of low-rank factorization for non-convex objective functions,
such as those used in DNN training, is that it constrains the space
of search directions that can be explored to maximize the objective
function. This helps to make the optimization more efficient and
reduce the number of training iterations, particularly for 2nd-order
optimization techniques.

The use of low-rank matrix factorization for improving opti-
mization problems has been explored in a variety of contexts. For ex-
ample, in multivariate regression involving a large-number of target
variables, the low-rank assumption on model parameters has been ef-
fectively used to constrain and regularize the model space [7], lead-
ing to superior generalization performance. DNN training may be
viewed as effectively performing nonlinear multivariate regression
in the final layer, given the data representation induced by the pre-
vious layers. Furthermore, low-rank matrix factorization algorithms
also find wide applicability in matrix completion literature (see, e.g.,
[8] and references therein). Our work extends these previous works
by exploring low-rank factorization specifically for DNN training,
which has the benefit of reducing the overall number of network pa-
rameters and improving training speed.

Our initial experiments are conducted on a 50-hour English
Broadcast News (BN) task [9], where a DNN is trained with 2,220
output targets. We show by imposing a rank of 128 on the final
matrix, we can reduce the number of parameters of the DNN by
28% with no loss in accuracy. Furthermore, we show that when
low-rank matrices are used with 2nd order Hessian-free sequence-
training [10], we can reduce the overall number of training iterations
by roughly 40%, leading to further training speed improvements.
Second, we explore the behavior of low-rank factorization on two
larger tasks with larger number of output targets: namely a 300-hour
Switchboard (SWB) task with 9,300 output targets and a 400-hour
English BN task with 6,000 output targets. On BN we can reduce
the number of parameters of the network by 49% and for SWB by
32%, with nearly no loss in accuracy. Finally, we extend the use of
low-rank factorization beyond acoustic modeling, exploring the ver-
satility of the low-rank technique on DNNs used for language mod-
eling (DNN-LM). We show that with low-rank factorization, we can
reduce the number of parameters of a DNN-LM trained with 10,000
output targets by 45% without a significant loss in accuracy,

The rest of this paper is organized as follows. Low-rank matrix
factorization is discussed in Section 2. Section 3 analyzes the low-
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rank factorization on a small 50-hr BN task. Results using low-rank
factorization for larger acoustic modeling tasks are discussed in Sec-
tion 4 and for language modeling in Section 5. Finally, Section 6
concludes the paper and discusses future work.

2. LOW-RANK MATRIX FACTORIZATION

The left-hand side of Figure 1 shows a typical neural network ar-
chitecture for speech recognition problems, namely 5 hidden layers
with 1,024 hidden units per layer, and a softmax layer with 2,220
output targets. In this paper, we look to represent the last weight
matrix in Layer 6, by a low-rank matrix. Specifically, let us denote
the layer 6 weight by A, which is of dimension m × n. If A has
rank r, then there exists [11] a factorization A = B × C where B
is a full-rank matrix of size m × r and C is a full-rank matrix of
size r × n. Thus, we want to replace matrix A by matrices B and
C. Notice there is no non-linearity (i.e. sigmoid) between matrices
B and C. The right-hand side of Figure 1 illustrates replacing the
weight matrix in Layer 6, by two matrices, one of size 1, 024 × r
and one of size r × 2, 220.

We can reduce the number of parameters of the system so long as
the number of parameters in B (i.e., mr) and C (i.e., rn) is less than
A (i.e., mn). If we would like to reduce the number of parameters
in A by a fraction p, we require the following to hold.

mr + rn < pmn (1)

solving for r in Equation 1 gives the following requirement needed
to reduce overall parameters by fraction p.

r <
pmn

m+ n
(2)

In Sections 3, 4 and 5, we will discuss our choice of r for specific
tasks, and the reduction in the number of network parameters.

3. LOW-RANK ANALYSIS

3.1. Experimental Setup

Our initial low-rank experiments are conducted on a 50 hour En-
glish Broadcast News (BN) transcription task [9] and results are
reported on 100 speakers in the EARS dev04f set. The initial
acoustic features are 13-dimensional MFCC features. An LVCSR
recipe described in [12] is used to create a set of feature-space
speaker-adapted (FSA) features, using vocal-tract length normaliza-
tion (VTLN) and feature-space maxiumum likelihood linear regres-
sion (fMLLR).

All pre-trained DNNs use FSA features as input, with a context
of 9 frames around the current frame. In [4], it was observed that a
5-layer DNN with 1,024 hidden units per layer and a sixth softmax
layer with 2,220 output targets was an appropriate architecture for
BN tasks. All DNNs are pre-trained generatively using the procedure
outlined in [4]. During fine-tuning, the DNN is first trained using
the cross-entropy (CE) objective function. With this criterion, after
one pass through the data, loss is measured on a held-out set1 and
the learning rate is annealed (i.e. reduced) by a factor of 2 if the
held-out loss has grown from the previous iteration [13]. Training
stops after we have annealed the weights 5 times. After CE training,
Hessian-free sequence-training [10] is performed to better adjust the
weights for a sequence-level speech task.

1Note that this held out set is different than dev04f.
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Fig. 1. Diagram of Deep Neural Network Architecture Commonly
Used in Speech Recognition

3.2. Low-Rank for Cross-Entropy Training

We first explore the behavior of the low-rank network, and the ap-
propriate choice of r, for a cross-entropy trained DNN. The baseline
DNN system contains 6.8M parameters and has a word-error-rate
(WER) of 17.7% on the dev04f set.

In the low-rank experiments, we replace the final layer full-
rank matrix of size 1, 024 × 2, 220, with two matrices, one of size
1, 024 × r and one of size r × 2, 220. Table 1 shows the WER for
different choices of the rank r and percentage reduction in parame-
ters compared to the baseline DNN system. Furthermore, Figure 2
plots the relative spectral norm error between the final layer full-rank
matrix and its best rank-r approximation, as a function of percentage
of parameters reduced by using a rank-r matrix. The figure shows
that between 0 to 30%, the increase in relative spectral norm error is
not large, approximately 0.05. In addition, the table shows that with
a 28% reduction in parameters (i.e., r = 128), the softmax outputs
are not significantly effected and we can achieve the same WER of
17.7% as the baseline system.
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Table 1. WER for Different Choices of Rank r on Softmax Layer
r = Rank WER # of Params (% Reduction)
Full Rank 17.7 6.8M

512 17.3 6.2M (10%)
256 17.6 5.4M (20%)
128 17.7 5.0M (28%)
64 18.0 4.8M (30%)
32 18.3 4.7M (31%)

0 20 40 60 80
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Percentage Reduction

R
el

at
iv

e 
A

pp
ro

xi
m

at
io

n 
E

rr
or

Fig. 2. Spectral Norm between Full and Rank r-Matrix

To further justify why a rank of 128 was feasible for this task,
we took a full-rank matrix and explored how many total of the 2,220
output targets were above a threshold of 1e-03, which we will term
as “active”. Figure 3 plots the histogram of the number of active
output targets for 50 utterances in the dev04f set. We can see that
typically 128 or less output targets are active, illustrating why a rank
of 128 was appropriate for the Broadcast News task.
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Fig. 3. Number of Active Output Targets

Finally, because the low-rank network has an extra weight mul-
tiplication compared to the full-rank system, we also check to make
sure that the reduction in parameters with the low-rank method im-
proves overall DNN training speed compared to the full-rank system.
All timing experiments in this paper were run on an 8 core Intel Xeon
X5570@2.93GHz CPU. Matrix/vector operations for DNN training
are multi-threaded using Intel MKL-BLAS. We find that the full-
rank system takes approximately 41 hours to train, while the low-
rank system takes 33 hours to train, roughly a 20% speedup in over-
all training with low-rank. We do not find that the overall number
of training iterations is reduced when using a low-rank versus full-
rank approximation. One possible reason for this is that mini-batch

SGD already helps to constrain search space as search directions
are computed frequently from small batches, and therefore low-rank
factorization does not help to further improve the optimization.

3.3. Low-Rank for Hessian-Free Sequence Training

Because sequence-training is often applied after cross-entropy train-
ing, we also explore network behavior with low-rank factorization
for sequence training. Given that r = 128 was best architecture
for cross-entropy training, we keep this architecture for sequence
training. Table 2 shows the performance after sequence-training for
the low-rank and full-rank networks. Notice that the WER of both
systems is the same, indicating that low-rank factorization does not
hurt DNN performance during sequence training. Furthermore, no-
tice that the number of iterations for the low-rank system is signif-
icantly reduced compared to the full-rank system. With a second-
order Hessian-free technique, the introduction of low-rank factor-
ization helps to further constrain the space of search directions and
makes the optimization more efficient. This leads to an overall se-
quence training time of 8.3 hours, a 55% speedup in training time
compared to the full-rank system with a training time of 18.7 hours.

Table 2. Low-Rank for Sequence Training
Method WER # Iters Training Time (hrs)

Full Rank 14.7 24 18.7
Low Rank (r=128) 14.7 14 8.4

3.4. Rank On Other Layers

We also check to see if network parameters can be further reduced
by applying the low-rank methodology to other layers. For this ex-
periment, we applied the low-rank factorization to the final hidden
layer, which has dimension 1, 024×1, 024. Table 3 shows the WER
and number of parameters for different rank choices of the hidden
layer matrix. The baseline system has a low-rank of 128 applied on
the final softmax layer, but no other factorization. As to be expected,
the reduction in parameters with low-rank is smaller compared to
Table 1 because the softmax weight layer is larger than the hidden
weight layer. Notice that the WER goes up when rank factorization
is used. This indicates that while the softmax-layer has a low-rank
factorization, the hidden layers do not have the same properties.

Table 3. WER for Different Choices of r on Final Hidden Layer
r = Rank WER Number of Params (% Reduction)
Baseline 17.7 5.0M

256 18.0 4.5M (11%)
128 18.1 4.2M (16%)

4. RESULTS ON A LARGER TASK

To make sure that the low-rank factorization is generalizable, we also
explored the behavior on two other larger data sets, which have even
larger numbers of output targets.

4.1. 400 Hr Broadcast News

4.1.1. Experimental Setup

First, we explore scalability of the proposed low-rank factorization
on 400 hours of English Broadcast News (BN) [9]. Results are re-
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Table 4. WER and perplexity for different choice of rank r
r = Rank WER Perplexity Params (% Reduction)

DNN LM DNN LM + 4-gram LM DNN LM DNN LM + 4-gram LM
Baseline 20.8 20.5 102.8 92.6 8.2M

256 20.9 20.5 101.8 92.0 5.8M (29%)
128 21.0 20.4 102.8 91.9 4.5M (45%)

ported on the DARPA EARS dev04f set. The initial acoustic fea-
tures are 19-dimensional PLP features. Again, FSA features are cre-
ated by utilizing VTLN and fMLLR speaker-adaptation techniques,
and are used as input to the DNN. All DNNs use FSA features as
input, with a context of 9 frames around the current frame. The ar-
chitecture consists of 5 hidden layers with 1,024 hidden units per
layer and a sixth softmax layer with 5,999 output targets. DNN re-
sults are only reported for cross-entropy training, to demonstrate the
parameter reduction with low-rank.

4.1.2. Results

Table 5 shows the WER and number of parameters for both the base-
line and low-rank DNNs. Notice, we can reduce parameters by 49%
without loss in accuracy. Furthermore, we find that training time
for the full-rank DNN takes roughly 14.8 days, while training time
for the low-rank DNN takes 7.7 days, roughly a 2-times speedup in
training time with low-rank.

Table 5. Low-Rank Behavior, 400 Hr BN
Method WER # of Params (% Reduction)

Full-Rank DNN 16.7 10.7M
Low-Rank DNN (r=128) 16.6 5.5M (49%)

4.2. 300 Hr Switchboard

4.2.1. Experimental Setup

Second, we demonstrate scalability of the proposed low-rank fac-
torization on 300 hours of conversational American English tele-
phony data from the Switchboard (SWB) corpus. Results are re-
ported on the Hub5’00 set. Again, FSA features are created by
utilizing VTLN and fMLLR speaker-adaptation techniques, and are
used as input to the DNN. All DNNs use FSA features as input,
with a context of 11 frames around the current frame. Following the
setup in [3], the architecture consists of 6 hidden layers with 2,048
hidden units per layer and a seventh softmax layer with 9,300 out-
put targets. Again, DNN results are only reported for cross-entropy
training only, to demonstrate the parameter reduction with low-rank.

4.2.2. Results

Table 6 shows the WER and number of parameters for both the base-
line and low-rank DNNs. For SWB, we find the best performance
with a rank of 512, compared to 128 for the BN tasks. Notice, we
can reduce parameters by 32% with very little loss in accuracy.

Table 6. Low-Rank Behavior, 300 Hr SWB
Method WER # of Params (% Reduction)

Baseline DNN 14.2 41M
Low-Rank DNN (r=512) 14.4 28M (32%)

5. LANGUAGE MODELING

We also explore low-rank factorization for DNNs in Language Mod-
eling (DNN-LM) 2 using the set-up given in [14]. We apply low-rank
factorization to the best scoring DNN architecture in [14], which
consists of one projection layer where each word is represented with
120 dimensional features, three hidden layers with 500 hidden units
per layer and a softmax layer with 10,000 output targets.

DNN language models are explored on a Wall Street Journal
(WSJ) task [15]. The language model training data consists of 900K
sentences (23.5M words). Development and evaluation sets consist
of 977 utterances (18K words) and 2,439 utterances (47K words)
respectively. Acoustic models are trained on 50 hours of Broadcast
News. Baseline 4-gram language models trained on 23.5M words
result in 22.3% WER on the evaluation set. DNN language models
are evaluated using lattice rescoring. The performance of each model
is evaluated using the model by itself and by interpolating the model
with the baseline 4-gram language model. Interpolation weights are
chosen to minimize the WER on the development set. The baseline
DNN language model yields 20.8% WER by itself and 20.5% after
interpolating with the baseline 4-gram language model.

In the low-rank experiments, we replace the final layer matrix of
size 500× 10, 000, with two matrices, one of size 500× r and one
of size r × 10, 000. Table 4 shows both the perplexity and WER on
the evaluation set for different choices of the rank r and percentage
reduction in parameters compared to the baseline DNN system.

The table shows that with a rank=128 in the interpolated model,
we can achieve almost the same WER and perplexity as the baseline
system, with a 45% reduction in number of parameters.

6. CONCLUSIONS

In this paper, we explored a low-rank matrix factorization of the final
weight layer in a DNN. We explored this factorization for acoustic
modeling on three different LVCSR tasks, including 50 and 400 hr
English Broadcast News tasks and a 300 hr Switchboard telephony
tasks. We found that this allowed us to reduce the number of param-
eters of the network between 30-50%, resulting in roughly a 30-50%
speedup in training time, with little loss in final recognition accuracy
compared to a full rank representation. Furthermore, we explored
the low-rank factorization for language modeling, also demonstrat-
ing improvements in training speed with no loss in final WER.
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