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ABSTRACT

Recently, the CORe CONsistency DIAgnostic (CORCONDIA) has
attracted more and more attention as an effective tool for determining
the number of components in parallel factor analysis (PARAFAC) or
Tucker 3 models. In CORCONDIA, a proper user-defined thresh-
old is required to ensure reliable performance. The optimal thresh-
old increases with the signal-to-noise ratio (SNR), which results in
significant probability of over-enumeration of the number of compo-
nents for high SNRs under fixed threshold settings. We propose to
first use a threshold interval to obtain lower and upper bounds of the
estimates. The estimate takes the upper bound as its initial value and
is then refined based on a sequence of hypothesis tests by exploit-
ing the reconstruction error of the PARAFAC decomposition. The
proposed scheme provides accurate detection for both low and high
SNRs at almost no extra computational cost.

Index Terms— Source enumeration, parallel factor analysis
(PARAFAC), core consistency, multi-linear algebra

1. INTRODUCTION

The parallel factor analysis (PARAFAC) model [1, 2] has a vari-
ety of applications in chemometrics [3], blind source separation [4],
multiple-input multiple-output (MIMO) radar [5] and wireless com-
munications. In the PARAFAC model, a tensor is decomposed into
the sum of rank-one tensors, which are defined as the outer product
of vectors. Each rank-one factor corresponds to a signal, or compo-
nent. Estimation of the tensor rank or number of signals or principal
components in the underlying PARAFAC model of noisy R-D mea-
surements, where R ≥ 3, is an essential task.

Recently, the CORe CONsistency DIAgnostic (CORCONDIA)
has been suggested for determining the number of components in
PARAFAC [3] or Tucker 3 models [6]. For each candidate rank,
the factor matrices of the PARAFAC model are first estimated via
alternating least squares (ALS) PARAFAC decomposition, and then
are used to calculate the core tensor. The core consistency defined
as the variation of the estimated core relative to the ideal one, e.g.,
the identity tensor, is calculated. The tensor rank is determined by
choosing the highest number of components that yields a core con-
sistency value greater than a pre-defined threshold. Although being
computationally expensive due to the iterative ALS algorithm, the
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CORCONDIA is an effective tool for enumeration from noisy mul-
tidimensional measurements even in scenarios where the number of
components exceeds the size of the measurement tensor [7].

However, in CORCONDIA a proper user-defined threshold is
required to ensure reliable performance. The optimal threshold
increases with signal-to-noise ratio (SNR). In particular, for high
SNRs, the CORCONDIA tends to over-enumeration by a couple
of components under fixed threshold settings. To improve
the detection accuracy, we propose an improved version of
CORCONDIA by exploiting the reconstruction error that is readily
available after PARAFAC decomposition. The motivation of using
reconstruction error is that for high SNRs and at the neighborhood
of the true number of components, the reconstruction error is more
powerful at discriminating the correct number of components from
incorrect ones than the core consistency.

Note that in the threshold-CORCONDIA [8], the difference of
the core consistency for two adjacent candidate rank is used for
enumeration instead. And the optimal threshold coefficients are
searched in an R-D grid. The problem with this scheme is that a
common threshold coefficient is used for a wide range of noise
levels. Moreover, according to the definition the core consistency is
unbounded in the negative direction, and hence using the
difference seems not reasonable since a large gap between adjacent
consistency values does not guarantee a high consistency value. As
a result, the threshold-CORCONDIA [8] has poor performance
with an empirical probability of correct detection (PoD) no more
than 70% even at sufficiently high SNRs.

The notation used in this paper align with [9]. The r-mode vec-
tors of a tensor T ∈ C

I1×I2×...×IR are obtained by varying the
r-th index within its range (1, . . . , Ir) and keeping all the other in-
dices fixed. The r-mode unfolding of a tensor T , symbolized by
[T ](r) ∈ C

Ir×(I1...Ir−1Ir+1...IR), represents the matrix of r-mode
vectors of T . The order of the columns is chosen in accordance
with [9]. The r-mode product of T and U ∈ C

Jr×Ir along the r-th
mode is denoted as T ×r U ∈ C

I1×I2···×Jr···×IR . It is obtained
by multiplying the r-mode unfolding of T from the left-hand side
by U . The operator vec(·) converts a matrix or tensor into a vec-
tor by stacking its columns or 1-mode vectors on top of each other.
The ⊗ and ◦ denote the Kronecker product and outer product, re-
spectively. The superscripts T and † represent matrix transpose and
pseudo inverse, respectively.
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2. DATA MODEL

The noise-free PARAFAC model is

X =
K
∑

k=1

f
(1)
k ◦ · · · ◦ f (R)

k , (1)

where X ∈ C
M1×···×MR is the signal tensor,

f
(r)
k = [f

(r)
k (1), . . . , f

(r)
k (Mr)]

T , k = 1, . . . ,K, r = 1, . . . , R, is
the k-th factor of the r-th mode.

By defining F (r) =
[

f
(r)
1 , . . . ,f

(r)
K

]

∈ C
Mr×K ,

r = 1, . . . , R, (1) can be rewritten in terms of r-mode products as

X = IR,K ×1 F
(1) ×2 F

(2) · · · ×R F
(R), (2)

where IR,K represents the R-D identity tensor of size K×K · · ·×
K, whose elements are equal to one when the indices i1 = i2 =
· · · = iR and zero otherwise. The X is composed of the sum of K
components each of which corresponds to a rank-1 tensor. The rank
of a tensor is defined as the minimal number of rank-1 tensors that
yields this tensor in a linear combination [9]. As in [3], we assume
that the rank of X is equal to the number of components, i.e., K.

In practice, the data are contaminated by noise and can be rep-
resented by

Y = X +Z, (3)

where Z is the noise tensor collecting independent and identically
distributed (i.i.d.) zero-mean circularly symmetric complex Gaus-
sian (ZMCSCG) noise samples with variance of σ2

z . The noise is
assumed uncorrelated with the signals. Denoting M =

∏R

r=1 Mr,
the SNR is defined as

SNR =
‖X‖2F
Mσ2

z

, (4)

where ‖·‖F denotes the higher-order Frobenius norm of a tensor,
which is defined as the square root of the sum of squared amplitude
of its elements. Given the noisy measurement tensor Y , our goal is
to estimate the number of components K.

3. REVIEW OF CORE CONSISTENCY DIAGNOSTIC

The principle behind the CORCONDIA is reviewed as follows.
Given k as a candidate value for the number of components, the R
factors are first estimated using the ALS [10]. Denote the resultant

factor matrix estimates as
{

F̂
(r)|r = 1, . . . , R

}

. We have

Y ≃ X̂ = IR,k ×1 F̂
(1) ×2 F̂

(2) · · · ×R F̂
(R)

. (5)

Applying the vectorization on both sides of (5) yields

vec (Y) ≃
(

F̂
(R) ⊗ · · · ⊗ F̂

(2) ⊗ F̂
(1)
)

vec(IR,k). (6)

Define a tensor GR,k of the same size as IR,k such that

vec(GR,k) =
(

F̂
(R) ⊗ · · · ⊗ F̂

(2) ⊗ F̂
(1)
)†

vec (Y) . (7)

In the absence of noise and if the PARAFAC model is perfectly ful-
filled with k = K, GR,k is equal to IR,k. Otherwise, the closeness
of GR,k to IR,k , or more formally, the core consistency defined
as [3]

CC(k) = 100

(

1− ‖GR,k − IR,k‖2F
k

)

, (8)

provides a measure of how well the k-component PARAFAC model
fits the observations.

Formally, the estimate of CORCONDIA, denoted as K̂CC, is
given by

K̂CC = max k subject to CC(k) ≥ η, (9)

where 0 < η < 1.0 is the threshold coefficient. An example of
the core consistency profile is shown in Figure 1(a), where M1 =
M2 = M3 = M4 = 7 and K = 3. We see that the CORCONDIA
cannot discriminate between the underestimated and true numbers
of components, since the former yields almost the same consistency
as the true one. Therefore, it makes sense to take the signal num-
ber estimate as the highest valid number of components. Typically,
70% ≤ η ≤ 90% is used [3].

4. PROPOSED APPROACH: CORCONDIA AIDED BY
RECONSTRUCTION ERROR

Other than underestimation, the CORCONDIA has low discrimi-
nation power in the neighborhood of the true number of compo-
nents as well. In particular, for high SNRs, it occurs frequently that
the overestimates by a couple of components yields a core consis-
tency very close to 100% and clearly larger than 90%, as shown in
Figure 1(a). Therefore, the CORCONDIA has a tendency to over-
enumeration under fixed threshold settings. To handle this, we can
set a higher threshold value. However, this will reduce the PoD for
low-to-medium SNRs, where the true number of components often
corresponds to a relatively small consistency value, as shown in Fig-
ure 1(b).

Therefore, the ideal threshold should increase with SNR. In or-
der to achieve good detection performance at both low and high
SNRs, we propose the following scheme. First, we adopt a threshold
interval to obtain the lower and upper bounds of the estimates:

K̂lb = max k subject to CC(k) ≥ ηub, (10)

K̂ub = max k subject to CC(k) ≥ ηlb, (11)

where ηlb and ηub are the user-defined lower and upper bounds of the
threshold coefficients. Empirically 5% ≤ ηlb ≤ 25% and 90% ≤
ηlb ≤ 99% work well.

In general, the gap between K̂lb and K̂ub is small. To iden-
tify the final estimate, we exploit the reconstruction error which,
for a candidate value k > 0, is defined as the sum of the squared
differences between the measured and reconstructed k-component
PARAFAC data:

r(k) =
∥

∥

∥Y − IR,k ×1 F̂
(1) ×2 F̂

(2) · · · ×R F̂
(R)
∥

∥

∥

2

F
. (12)

The motivation of using reconstruction error is that for high SNRs
and at the neighborhood of the true number of components, the re-
construction error has more discriminative power than the core con-
sistency. As shown in Figure 1(a), based on the core consistency we
are apt to mistakenly choose the number of components as k = 4,
while Figure 1(c) shows that using the reconstruction error, we can
correctly identify the number of components as k = 3.

Denote the relative difference between the reconstruction error
for (k − 1) and k as

Dr(k) =
r(k − 1)− r(k)

r(k)
, (13)
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(a) CC: SNR = 30 dB

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

k

C
on

si
st

en
cy

 (
%

)

(b) CC: SNR = 0 dB
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(c) RE: SNR = 30 dB

Fig. 1: Core consistency (CC) and reconstruction error (RE) versus k for high and low SNRs. M1 = M2 = M3 = M4 = 7. K = 3.

where r(0) = ‖Y‖2F . We undertake a sequence of hypothesis tests
starting with K̂ub:

H0 : K̂ub is NC , Dr(K̂ub) < ρ,

H1 : K̂ub is PC , Dr(K̂ub) ≥ ρ, (14)

where ρ is a pre-determined threshold, NC means noise component
and PC means principal component. If K̂ub corresponds to NC, H0

is accepted, and we proceed to the next hypothesis test with K̂ub−1.
We continue this way until the alternative hypothesis H1 is accepted.
If in all hypothesis tests from K̂ub to K̂lb, H0 is accepted, which is
often the case for low SNRs less than 0 dB, then we choose K̂ub

as the final estimate. The motivation of such a choice is that for
low SNRs, the CORCONDIA has a tendency to underestimate the
number of components. By choosing the estimation upper bound as
the final estimate, this tendency can be alleviated and hence a higher
PoD is expected.

Formally, defining

K =
{

K̂lb ≤ k ≤ K̂ub|Dr(k) ≥ ρ
}

, (15)

the final estimate of the number of components is given by

K̂CC =

{

max
k∈K

k, K 6= ∅;
K̂ub, K = ∅.

(16)

4.1. Threshold computation by Monte Carlo methods

The null hypothesis H0 corresponds to over-enumeration by a cer-
tain number of signals not larger than (Kub −Klb). In the presence
of strong signals (high SNRs), the probability of over-enumeration
by δ components, δ = 1, . . . , (Kub −Klb), can be approximated
by the probability of false alarm (Pfa) by the same number of com-
ponents in noise-only measurements.

Denote the residual error of fitting the noisy measurement to a k-
component PARAFAC model as σ2

δ . Similarly with (13), we define
the relative difference of adjacent fitting errors as

Dz(δ) =
σ2
δ−1 − σ2

δ

σ2
δ

, (17)

where σ2
0 = Mσ2

z . It follows that the Pfa by δ components is

Pfa(δ) ≃ Pr {Dz(δ) ≥ ρ(δ)} = E
[

1D
(

σ2
δ−1, σ

2
δ

)]

, (18)

where
D =

{

σ2
δ−1 > σ2

δ > 0|Dr(δ) ≥ ρ(δ)
}

, (19)

and 1D
(

σ2
δ−1, σ

2
δ

)

is the indicator function equal to 1 for all ele-
ments in D and 0 for all elements not in D.

The right-hand side of (18) can then be estimated by Monte
Carlo simulations, which proceeds in the following steps:

1) Generate Q noise-only measurement tensor
Z ∈ C

M1×···×MR of unit variance, where Q is the number
of Monte Carlo runs. For the q-th, q = 1, . . . , Q,
a) Compute the reconstruction error σ2

q,δ for
δ = 1, 2, . . . , ⌈max (M1, . . . ,MR) /2⌉ after PARAFAC
decomposition, where ⌈x⌉ denotes the smallest integer
greater than or equal to x;
b) Compute Dz(δ) and 1D

(

σ2
q,δ−1, σ

2
q,δ

)

according to (17)
and (18).

2) Estimate the Pfa by P̂fa = 1/Q
∑Q

q=1 1D
(

σ2
q,δ−1, σ

2
q,δ

)

.

To obtain a relative estimation error of P̂fa that is smaller than
α for a confidence level β, the number of Monte Carlo runs should
satisfy Q ≥ c2/(α2Pfa) [11], where c is obtained from

∫ c

−c

1√
2π

exp{−y2

2
}dy = β.

In Figure 2 we have plotted the Pfa versus ρ. Here α = 0.1,
β = 95%, and the minimum number of required Monte Carlo runs
Q = 38415 is used.

From this curve, ρ is selected for each δ and for a given Pfa.
Considering that we do not know the extent of over-enumeration in
H0 of (14), we can take the maximum value of ρ(δ),
δ = 1, . . . , (Kub −Klb) as the threshold ρ.

4.2. Note on complexity

The dominant computational load in the proposed scheme is the de-
termination of the optimal threshold ρ via the Monte Carlo (MC)
simulation in Section 4.1. Since the threshold is calculated through
noise-only MC simulation and is a function of the measurement ten-
sor size only, and in practical applications the measurement size is
known and does not vary often, the MC simulation can be conducted
offline. Besides, the reconstruction error in (12) is used in the stop-
ping criterion for the iterative ALS PARAFAC decomposition algo-
rithm, and therefore it is already known after the iteration stops and
does not require extra computations as well.
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Fig. 2: Probability of false alarm versus ρ(δ) for threshold compu-
tation. M1 = M2 = M3 = M4 = 5.

5. NUMERICAL EXAMPLES

In the PARAFAC model, the factor matrices contain i.i.d ZMCSCG
entries with unit variance. The noise power σ2

z is scaled to obtain
different SNRs. For each SNR, 1000 independent Monte Carlo runs
have been conducted. The performance measure is the PoD, i.e.,
Pr(K̂CC = K), averaged over noisy realizations of all Monte Carlo
runs. In the proposed scheme, the lower and upper bounds of the
threshold in the proposed scheme are chosen as ηlb = 12.5% and
ηub = 99%. We compare our proposal with the following schemes:
CORCONDIAs with a fixed threshold η = 12.5%, 99% and the
typical setting of η = 75%.

First we consider a 3-D PARAFAC model of size
M1 = 5,M2 = 7,M3 = 8. In Figure 3, we plot the PoD versus
SNR for K = 4 components. We see that the CORCONDIA with a
fixed threshold η = 12.5% has a low PoD at high SNRs due to
frequent over-enumeration, and the CORCONDIA with a fixed
threshold η = 99% has a high PoD at sufficiently high SNRs but
remarkably inferior performance at low-to-medium SNRs due to
significant probability of under-enumeration. Our proposal
combines the merits of both schemes, and significantly outperforms
the scheme with the typical threshold of η = 75% at both low and
high SNRs. Note that as the SNR decreases below 0 dB, the PoD
rises to a level that is close to that of the CORCONDIA with a fixed
threshold η = 12.5% instead of going down to zero. Similar
observations are made in Figure 4. This is because for low SNRs, it
frequently happens that H1 is rejected in all hypothesis tests of

candidate signal numbers within the interval
[

K̂lb, K̂ub

]

, in which

case the candidate upper bound K̂ub is chosen as the final estimate
according to (16). As mentioned in Section 4, such a strategy
alleviates the tendency of the CORCONDIA to underestimation
which results in a higher PoD.

In Figure 4, we use a 4-D PARAFAC model of size M1 = M2 =
M3 = M4 = 5 for K = 3 components. Again, our proposal
combines the advantages of the first scheme at low SNRs and the
second scheme at high SNRs, and outperforms the last scheme with
typical threshold of η = 75% for all SNRs.
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Fig. 3: PoD vs. SNR for a 3-D array of size M1 = 5,M2 =
7,M3 = 8. K = 4.
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Fig. 4: PoD vs. SNR for a 4-D array of size M1 = M2 = M3 =
M4 = 5. K = 3.

6. CONCLUSION

The CORCONDIA is a conventional approach for determining the
number of components in PARAFAC or Tucker 3 models. Its perfor-
mance relies on a user-defined threshold whose optimal value varies
with the SNR. In this work, we propose to first use a low threshold
to obtain an upper bound of the estimate. The estimate takes the up-
per bound as its initial value, and is then gradually refined based on
a sequence of hypothesis tests by exploiting the reconstruction error
which is readily available after the PARAFAC decomposition. The
proposed scheme results in accurate detection performance at both
low and high SNRs, while almost no extra computation overhead is
required.
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