
ANALYSIS OF FISHER INFORMATION AND THE CRAMER-RAO BOUND FOR
NONLINEAR PARAMETER ESTIMATION AFTER COMPRESSED SENSING

Pooria Pakrooh,1 Louis L. Scharf,2 Ali Pezeshki,3 and Yuejie Chi4

1 ECE Department, Colorado State University, Fort Collins, CO.
2 Departments of Mathematics and Statistics, Colorado State University, Fort Collins, CO.

3 Departments of ECE and Mathematics, Colorado State University, Fort Collins, CO.
4 Departmnets of ECE and Biomedical Informatics, The Ohio State University, Columbus, OH.

ABSTRACT

In this paper, we analyze the impact of compressed sensing
with random matrices on Fisher information and the CRB
for estimating unknown parameters in the mean value func-
tion of a multivariate normal distribution. We consider the
class of random compression matrices that satisfy a version
of the Johnson-Lindenstrauss lemma, and we derive analyti-
cal lower and upper bounds on the CRB for estimating param-
eters from randomly compressed data. These bounds quantify
the potential loss in CRB as a function of Fisher information
of the non-compressed data. In our numerical examples, we
consider a direction of arrival estimation problem and com-
pare the actual loss in CRB with our bounds.

Index Terms— Cramer-Rao bound, compressed sensing,
Fisher information, Johnson-Lindenstrauss Lemma, parame-
ter estimation

1. INTRODUCTION

Inversion of a measurement for its underlying modes is an
important topic which has applications in communications,
radar/sonar signal processing and optical imaging. The clas-
sical methods for inversion are based on maximum likelihood,
variations on linear prediction, subspace filtering, etc. Com-
pressed sensing [1]–[3] is a relatively new theory which ex-
ploits sparse representations and sparse recovery for inver-
sion.

In our previous work [4]–[7], the sensitivity of sparse in-
version algorithms to basis mismatch and frame mismatch
were studied. Our results show that mismatch between the ac-
tual basis in which a signal has a sparse representation and the
basis (or frame) which is used for sparsity in a sparse recon-
struction algorithm e.g., basis pursuit, has performance con-
sequences on the reconstructed parameter vector.

This paper addresses another fundamental question: How
much information is retained (or lost) in compressed noisy
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measurements for nonlinear parameter estimation? To an-
swer this question, we analyze the effect of compressed
sensing on the Fisher information matrix and the Cramer-
Rao bound (CRB). In our analysis, we consider compres-
sion matrices which satisfy an extension of the Johnson-
Lindenstrauss lemma (cf. [8]) for p−dimensional subspaces,
where p is the dimension of the underlying parameter vector.

Our prior work on compressed sensing and the Fisher in-
formation matrix [6, 7] contain numerical results that charac-
terize the increase in CRB after random compression for the
case where the parameters nonlinearly modulate the mean of
the measurements in a multivariate Normal model. In this pa-
per we derive analytical lower and upper bounds on the CRB
for that case. These bounds quantify the potential loss in CRB
and provide loose guidelines for selecting the compression ra-
tio to manage the loss in CRB. Our results are simulated for
the special example of DOA estimation in which the unknown
parameters are nonlinearly embedded in the mean of a Gaus-
sian distribution. The results are plotted to give the upper and
lower bounds on the Mean-Squared Error (MSE) of any un-
biased estimator after compressed sensing.

Other studies on the effect of compressed sensing on the
CRB and the Fisher information matrix include [9]–[11].
Babadi et al. [9] proposed a so-called “Joint Typicality Esti-
mator” to show the existence of an estimator which asymp-
totically achieves the CRB of sparse parameter estimation for
random Gaussian compression matrices. Niazadeh el al. [10]
generalize the results of [9] to a class of random compres-
sion matrices which satisfy the concentration of measures
inequality. Ramasamy et al. [11] derive bounds on the Fisher
information matrix, but not for the model we are considering.
We will clarify the distinction between our work and [11]
after establishing our notation in Section 2.

2. PROBLEM STATEMENT

Let y ∈ Rn be a real random vector whose probability den-
sity function f(y;θ) is parametrized by an unknown but de-
terministic parameter vector θ ∈ Rp. The derivative of the
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log-likelihood function with respect to θ = [θ1, θ2, · · · , θp]
is called the Fisher score, and the covariance matrix of the
Fisher score is the Fisher information matrix which we de-
note by J(θ):

J(θ) = E[(
∂ log f(y;θ)

∂θ
)(
∂ log f(y;θ)

∂θ
)T ]. (1)

The inverse J−1(θ) of the Fisher information matrix lower
bounds the error covariance matrix for any unbiased estimator
θ̂(y) of θ, that is

E[(θ̂(y)− θ)(θ̂(y)− θ)T ] ≽ J−1(θ) (2)

where A ≽ B for matrices A,B ∈ Rn×n means aTAa ≥
aTBa for all a ∈ Rn. The ith diagonal element of J−1(θ) is
the Cramer-Rao bound for estimating θi and it gives a lower
bound on the MSE of any unbiased estimator of θi from y
(see, e.g., [12]).

When f(y;θ) is a multivariate normal density N (x(θ),R)
with unknown mean vector x(θ) parametrized by θ, and
known covariance R = σ2I, the Fisher information matrix is
the Grammian

J(θ) = GTR−1G =
1

σ2
GTG. (3)

The ith column gi of G = [g1,g2, · · · ,gp] is the partial
derivative gi = ∂

∂θi
x(θ), which characterizes the sensitiv-

ity of the mean vector x(θ) to the ith parameter θi. The CRB
for estimating θi is given by

(J−1(θ))ii = σ2(gT
i (I−PGi

)gi)
−1 (4)

where Gi consists of all columns of G except gi, and PGi is
the orthogonal projection onto the column space of Gi [13].
This CRB can also be written as

(J−1(θ))ii =
σ2

∥gi∥22 sin
2(ψi)

(5)

where ψi is the principal angle between subspaces ⟨gi⟩ and
⟨Gi⟩. These representations illuminate the geometry of CRB,
which is discussed in detail in [13].

If y is compressed by a compression matrix Φ to produce
ŷ = Φy, then the probability density function of the com-
pressed data ŷ is N [Φx(θ), σ2ΦΦT ] and the Fisher informa-
tion matrix Ĵ(θ) and the CRB (Ĵ−1(θ))ii for estimating θi
from ŷ are given by

Ĵ(θ) =
1

σ2
ĜT Ĝ (6)

and
(Ĵ−1(θ))ii = σ2(ĝT

i (I−PĜi
)ĝi)

−1 (7)

where ĝi = PΦT gi, Ĝi = PΦTGi, and PΦT = ΦT (ΦΦT )−1Φ

is the orthogonal projection onto row span of Φ [13].

Our aim is to bound the loss in CRB due to compres-
sion. In Section 4, we investigate this problem for the case
where the compressed sensing matrix Φ satisfies a subspace
version of the Johnson-Lindenstrauss (JL) Lemma, as will be
discussed in Section 3.

Remark 1: In parallel to our work, Ramasamy et al. [11]
have also looked at the impact of compression on Fisher in-
formation. However, they have considered a different pa-
rameter model. Specifically, their compressed data has den-
sity N [Φx(θ), σ2I], in contrast to ours which is distributed
as N [Φx(θ), σ2ΦΦT ]. In a signal-plus-noise scheme our
model corresponds to compressing the noisy signal x(θ)+n,
n ∼ N (0, σ2I), to produce Φx(θ) + Φn. In contrast, their
model corresponds to compressing a noiseless signal x(θ) to
produce Φx(θ) +w, where w ∼ N (0, σ2I) represents post-
compression noise. Note that the Fisher information, CRB
and corresponding bounds of these two models are different,
as in our model noise enters at the input of the compressor,
whereas in [11] noise enters at the output of the compressor.
This is an important distinction.

3. SUBSPACE JOHNSON-LINDENSTRAUSS LEMMA

Definition 1: For any ϵ ∈ (0, 1), a random linear transforma-
tion Φ : Rn → Rm is said to satisfy an ϵ−JL type Lemma
over a set of vectors Q ⊂ Rn with probability at least 1− δ if

Pr
(
∀q ∈ Q : (1− ϵ)∥q∥22 ≤ ∥Φq∥22 ≤ (1 + ϵ)∥q∥22

)
≥ 1− δ.

(8)
For random matrices that satisfy E(∥Φr∥22) = ∥r∥22 for

any r ∈ Rn, [14] uses the union bound to show that

δ ≤ 2|Q|e−mc0(ϵ) (9)

where c0(·) is a function that depends on the distribution from
which the entries Φij of Φ are drawn. When Φij’s are i.i.d
N (0, 1/m), then c0(ϵ) = ϵ2/4− ϵ3/6.

Now for our bounding purposes in Section 4, we general-
ize the ϵ−JL type Lemma to the case of affine p-dimensional
subspaces in Lemma 1.

Lemma 1: Let Φ : Rn → Rm (m < n), and ϵ ∈ (0, 1).
Then Φ satisfies the ϵ−JL type Lemma over any arbitrary p-
dimensional subspace ⟨V⟩ of Rn with probability at least 1−
δ, provided that it satisfies the ϵ′−JL type Lemma over any
set Q ⊂ Rn of ⌈(2√p/ϵ′)p⌉ vectors with probability at least
1− δ, where ϵ′ satisfies ( 3ϵ′

1−ϵ′ )
2 + 2( 3ϵ′

1−ϵ′ ) = ϵ.
Remark 2: The statement of Lemma 1 and its proof

(omitted for lack of spaces) are inspired by [15]. However,
our proof is different and the above way of stating the result
makes it more readily applicable for our analysis in Section
4.
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4. CRAMER-RAO BOUND ON PARAMETER
ESTIMATION AFTER COMPRESSED SENSING

To bound the CRB (Ĵ−1(θ))ii after compressed sensing, we
use the following Lemma.

Lemma 2: Let Xm×n and Ym×p be two arbitrary matri-
ces. Let Z = [X Y]. Then,

λmax(Z
TZ) ≥ λmax(X

TP⊥
YX) (10)

λmin(Z
TZ) ≤ λmin(X

TP⊥
YX) (11)

where λmax(·) and λmin(·) take the largest and smallest
eignenvalues of a matrix respectively.

Proof: Proof follows from eigenvalue analysis of the in-
verse of the block Grammian matrix ZTZ.
Now, let Z = [ĝi Ĝi]. Then, from Lemma 2 it follows that

λmin(G
TPΦTG) ≤ ĝT

i (I−PĜi
)ĝi ≤ λmax(G

TPΦTG).
(12)

Since GT (I − PΦT )G is a positive semidefinite matrix, we
have GTG ≽ GTPΦTG. Consequently,

λmax(G
TG) ≥ λmax(G

TPΦTG). (13)

From the upper bounds in (12) and (13) we have ĝT
i (I −

PĜi
)ĝi ≤ λmax(G

TPΦTG).
The lower bound in (12) is bounded as

λmin(G
TPΦTG) = min

∥a∥2=1
aTGTΦT (ΦΦT )−1ΦGa

≥ λmin((ΦΦT )−1)∥ΦGa∥22
≥ C∥ΦGa∥22 (14)

with probabbility 1 − δ′. Here 1 − δ′ is the probability
that λmin((ΦΦT )−1) is larger than C. This probability
can be calculated based on the distribution of the maximum
eigenvalue of the Grammian ΦΦT . For example, if Φm×n

has i.i.d. entries distributed as N (0, 1/m), then ΦΦT has
Wishart distribution and δ′ is determined based on the re-
sults of [16] on the distribution of the largest eigenvalue of a
Wishart matrix and the value of C.

If Φ satisfies the ϵ−JL type Lemma for any p-dimensional
subspace (including ⟨G⟩) with probability at least 1−δ, then,
we have

∥ΦGa∥22 ≥ (1− ϵ)∥Ga∥22 (15)

≥ (1− ϵ)λmin(G
TG)

with probability at least 1− δ. This guarantee probability can
be lower bounded using (9) for δ and by replacing ϵ in (9)
with ϵ′ from Lemma 1. Combining (14) and (15), we have

λmin(G
TPΦTG) ≥ C(1− ϵ)λmin(G

TG) (16)

with probability at least 1− δ − δ′.
Recalling that J(θ) = 1

σ2G
TG, Ĵ(θ) = 1

σ2G
TPΦTG

and using (12) and (16), we can bound the CRB after com-
pressed sensing (Ĵ−1(θ))ii as

λmin(J
−1(θ)) ≤ (Ĵ−1(θ))ii ≤

λmax(J
−1(θ))

C(1− ϵ)
(17)

where the upper bound is valid with probability at least 1 −
δ − δ′. Also, because GTG ≽ GTPΦTG we always have
an increase in CRB after compression. That is, J(θ) ≽ Ĵ(θ),
which implies

(Ĵ−1(θ))ii ≥ (J−1(θ))ii ≥ λmin(J
−1(θ)). (18)

In summary, we have

(J−1(θ))ii ≤ (Ĵ−1(θ))ii ≤
λmax(J

−1(θ))

C(1− ϵ)
(19)

where the upper bound is valid with probability at least 1 −
δ − δ′.

Remark 3: We can also derive bounds on tr (Ĵ−1(θ))

and det(Ĵ−1(θ)) using (19) and Hadamard’s inequality:

tr(J−1(θ)) ≤ tr(Ĵ−1(θ)) ≤ pλmax(J
−1(θ))

C(1− ϵ)
(20)

det(Ĵ−1(θ)) ≤
p∏

i=1

(Ĵ−1(θ))ii ≤ (
λmax(J

−1(θ))

C(1− ϵ)
)p. (21)

Again, these upper bounds are valid with probability at least
1− δ− δ′. The trace of Ĵ−1(θ) is the CRB for estimating the
parameter vector θ from ŷ and the det(Ĵ−1(θ)) is the volume
of the concentration ellipse in that estimation.

Remark 4: We can generalize our results to the case
where y has complex Gaussian distribution CN (x(θ), σ2I).
To do so, we define Gr = real(∂x(θ)∂θ ) and Gi = imag(∂x(θ)∂θ ).
Writing the Fisher information matrix as in (1) and after some
calculations we get J(θ) =

2(GT
r Gr+GT

i Gi)
σ2 = 1

σ2G
TG,

where GT =
√
2[GT

r GT
i ] is the complex matrix of sen-

sitivity vectors. Therefore, we can do our analysis for G
with its columns as the newly defined sensitivity vectors and
derive similar bounds as in (19).

5. NUMERICAL RESULTS

As a special example, we consider the effect of compression
on DOA estimation with a uniform line array with n elements.
In our simulations, we consider two sources whose electri-
cal angles θ1 and θ2 are unknown. The mean vector x(θ) is
x(θ) = x(θ1) + x(θ2), where

x(θi) = Aie
jϕi [1 ejθi ej2θi · · · ej(N−1)θi ]T . (22)
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Here Ai and ϕi are the amplitude and phase of the ith source,
which we assume to know. We set ϕ1 = ϕ2 = 0 and A1 =
A2 = 1. We wish to estimate θ1, whose true value in this ex-
ample is zero, in the presence of the interfering source at elec-
trical angle θ2. The CRB on the estimation of θ1 is calculated
for different values of θ2. For our simulations, we use Gaus-
sian compression matrices Φm×n whose elements are i.i.d.
N (0, 1/m). Fig. 1 shows the results for m = 32, n = 64
and Fig. 2 shows the results for m = 3000, n = 8192. The
red curves are the actual CRBs (Ĵ−1(θ))11 for several (10 in
Fig. 1 and 5 in Fig. 2) independent realizations of random Φ,
the blue curves represent the before compression CRBs which
lower bound the CRBs (Ĵ−1(θ))11. The black curves repre-
sent the upper bounds on (Ĵ−1(θ))11. In computing these
bounds we have set C = 0.17 in Fig.1 and C = 0.14 in Fig.2
to get δ′ = 0.05 in each case. The values of ϵ for the upper
bounds are 0.66 (solid black) and 0.33 (dashed black). These
bounds quantify the loss in the CRB after compressed sens-
ing.
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Fig. 1. Bounds on the CRB for −2π/n ≤ θ2 ≤ 2π/n
(Rayleigh limit), m = 32, n = 64

The upper bounds (black curves) for the CRB are valid
with probability at least 1 − δ − δ′, where 1 − δ is the lower
bound on the probablity with which the compression matrix
Φ is ϵ-JL over the set of (p = 2)-dimensional subpaces of
Rn and δ′ = Pr(λmin((ΦΦT )−1) < C). For a Gaussian
compression matrix, ΦΦT is Wishart and δ′ can be easily
calculated using the result of [16]. A lower bound on the ϵ-
JL probability 1 − δ (or alternatively an upper bound on δ)
can be calcuated using the arguments in [14] or [17]. Fig. 3
shows the plots of upper bounds for δ versus the number of
measurementsm for ϵ = 0.66 (red curve) and ϵ = 0.33 (green
curve) for n = 8192. For any choice of m, Fig. 3 can be
used to determine a lower bound on the confidence level 1 −
δ − δ′ for the upper bound on the after compression CRB for
each value of ϵ. Alternatively, we can plot the curves versus
ϵ for fixed values of m. In that case, the plots may be useful
to find a number of measurements that would guarantee that
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Fig. 2. Bounds on the CRB for −2π/n ≤ θ2 ≤ 2π/n
(Rayleigh limit), m = 3000, n = 8192

after compression CRB does not go above a desired bound
(corresponding to a particular ϵ) with probability at least 1 −
δ − δ′. We note that, as with many probabilistic performance
guarantees for compressed sensing, these probability bounds
are too conservative, and sometimes they result in even trivial
bounds, unless m and n are very large.
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Fig. 3. The plot of an upper bound on δ versus the number
of measurements m for n = 8192 and ϵ = 0.66 (red) and
ϵ = 0.33 (green)

6. CONCLUSION

In this paper, we have studied the effect of random com-
pression of noisy measurements on the CRB for estimating
parameters in a nonlinear model. The class of random com-
pressors under study preserve the norm of vectors in any
p−dimensional subspace up to a small multiplicative factor.
The CRB before compressed sensing lower bounds the CRB
after compression. An upper bound was derived for the CRB
after compressed sensing.
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