
ONLINE EM ESTIMATION OF THE DIRICHLET PROCESS MIXTURES
SCALE PARAMETER TO MODEL THE GPS MULTIPATH ERROR

Vincent Pereira? Audrey Giremus? Asma Rabaoui† Eric Grivel?
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ABSTRACT

The performance of GPS is strongly degraded in a multipath
environment. The multipath impact the distribution of the additive
noise corrupting the distance measurements between the satellites
and the GPS receiver. In this paper, this distribution is assumed un-
known and modeled in a flexible way by using the Bayesian non
parametric framework and more precisely the Dirichlet process mix-
tures. Nevertheless, these latter depend on the so-called scale pa-
rameter which can be difficult to tune a priori. The originality of our
approach consists in adapting a recent version of the online EM algo-
rithm, developed by Cappé for hidden Markov models, to compute a
maximum a posteriori estimate of the scale parameter. Then, as the
proposed model is non linear and non Gaussian, the EM-based scale
parameter estimation is coupled with a Rao-Blackwellized particle
filter for the joint estimation of the mobile location and the distance
measurement noise distribution.

Index Terms— GPS navigation, multipath, Dirichlet process
mixtures, online EM, Rao-Blackwellized particle filter.

1. INTRODUCTION

Thanks to the Global Positioning System (GPS), every user can
obtain his position anywhere on earth. For that purpose, the GPS
receiver estimates the propagation delays of signals transmitted by a
constellation of satellites of known locations. Then, distance mea-
surements are computed through multiplication by the velocity of
light in vacuum. In the sequel, these latter will be referred to as
pseudo-ranges.

Today, an accuracy of about 10 m can be nominally achieved.
However, the GPS performance can strongly deteriorate in urban
environments due to the multipath phenomenon. It happens when
different replicas of the satellite signal, incoming from reflections on
nearby obstacles, reach the receiver. Chapter 7 in [1] details several
methods that have been designed to mitigate multipath effects. A
class of approaches deals with multipath effects directly at the level
of the navigation algorithm which estimates the position from the
pseudo-ranges. They have the advantage of avoiding any modifica-
tion of the receiver architecture.

In [2], a Bernoulli-Gaussian distribution is considered to model
multipath-induced errors that contribute to the additive noise term
within the pseudo-ranges. Therefore, the multipath errors can be
directly detected and compensated within a particle filter (PF) that
estimates the mobile dynamics. The estimation of the multipath
model parameters is based on the correlation in time of the multi-
path. However, such an assumption is no longer realistic in an envi-

ronment with a high density of obstacles and fast moving vehicles.
As an alternative, in [3], Rabaoui et al. suggest modeling the

unknown distribution of the noises disturbing the pseudo-ranges
by using non parametric approaches based on Dirichlet Process
Mixtures (DPM). This makes it possible to capture any multimodal
distribution without having to set a priori the number of modes.
Then, the unknown distribution is directly estimated by a PF from
the gathered pseudo-ranges along with the position of the GPS re-
ceiver. Nevertheless, the performance of the estimation strongly
depends on the so-called scale parameter of the DPM. Tuning this
parameter can be a difficult task for the practitioner. A solution is to
estimate it jointly with the other unknown variables.

However, online estimation of static parameters cannot be per-
formed by applying a standard PF. Indeed, this problem leads to
convergence issues since the parameter space is only explored at
the initialization of the algorithm [4]. A first solution would consist
in introducing artificial dynamics for the unknown parameters at
the expense of the estimation accuracy [5]. As an alternative, the
seminal work of Gilks [6] consists in adding Markov Chain Monte
Carlo steps within the PF to reintroduce diversity. This approach
was used in [3] to jointly estimate the parameters of the DPM and
the unknown pseudo-range noise distribution. However, this solu-
tion results in particle impoverishment [4].

In this paper, we propose to adjust the scale parameter by means
of a recursive online expectation-maximisation (EM) procedure.
Compared to the classical EM, the principle is to update the pa-
rameter estimate whenever a new measurement becomes available.
Different formulations have been recently developed for finite state
hidden Markov models (HMM) [7] and continuous state HMM [8]
when the complete-data likelihood belongs to the exponential family
of distributions (EFD) [9]. In this paper, we take advantage of the
latter to perform a maximum a posteriori (MAP) estimation in place
of a maximum likelihood (ML) estimation. The introduction of a
prior distribution regularizes the estimation of the scale parameter
by preventing degeneracies. Then, as the proposed model is weakly
non linear and conditionally Gaussian given some latent variables
characterizing the unknown noise distribution, a Rao-Blackwellized
PF (RBPF) is used to perform the estimation.

The paper is organized as follows: in section 2, DPM are pre-
sented. The so-called Polya urn and the scale parameters are also
introduced. Section 3 details the Bayesian hierarchical model of
the GPS navigation problem in the presence of multipath. Section
4 describes the proposed RBPF algorithm. Section 5 deals with the
online EM algorithm and its application to the DPM scale parameter
estimation. Finally, the results obtained on simulated GPS data are
discussed in section 6.
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2. DIRICHLET PROCESS MIXTURES
DPM are Bayesian non parametric models that make it possible to
fit all kinds of probability distributions.
Let us consider a random variable vt distributed according to an un-
known distribution F . In a non parametric framework, F can be
expressed by the following integral expression:

F (vt) =

∫
Θ

f(vt|θt)G(θt)dθt, (1)

where θt ∈ Θ is the so-called latent variable. θt contains the param-
eters of f , the user-chosen mixed probability density function (PDF).
Usually, a Gaussian PDF is chosen for f with its mean µt and vari-
ance φt stored in θt = [µt, φt]

T and f(vt|θt) = N (vt;µt, φt).
Finally, G is the unknown mixing distribution. It is assumed to be a
random distribution. In a Bayesian framework, its prior distribution
must be chosen by the practitioner. A classical choice for the prior
of G is the Dirichlet process (DP).

The DP can be seen as a probability distribution over the space
of probability distributions. G is distributed according to a DP of
base distribution G0 and positive scale parameter α, denoted as
G ∼ DP(G0, α).
Furthermore, the realizations G of a DP are discrete but infinite
distributions. According to the stick-breaking representation, they
can be expressed as infinite mixtures of Dirac measures as follows:

G(θt) =

+∞∑
j=1

πjδUj (θt), πj = βj

j−1∏
l=1

(1− βl), (2)

with the clusters Uj
iid∼ G0 and where iid stands for “independent

and identically distributed”. The weights πj in (2) are defined se-
quentially with βj

iid∼ B(1, α) where B denotes the Beta law.
Combining (1) and (2), we obtain the following alternative expres-
sion for the unknown distribution F :

F (vt) =

+∞∑
j=1

πjf(vt|Uj). (3)

Thus, F consists of an infinite mixture of the PDF f with mixture
weights πj and parameters contained in Uj .
An advantage of the DP is that the computations involved in the
Bayesian estimation procedure can be considerably simplified. In-
deed, it has been shown in [10] that the latent variables θt can
be directly sampled sequentially without explicitly involving G.
Marginalizing G leads to the Polya urn representation as follows:

p(θt|θ1:t−1;α) =
1

α+ t− 1

t−1∑
j=1

δθj (θt) +
α

α+ t− 1
G0(θt).

(4)
An equivalent formulation, which is used in the sequel, consists in
introducing an auxiliary variable ct ∈ {0, 1}. The value ct = 1
indicates that the sample θt is identical to a previous one with prob-
ability Pr[ct = 1;α, t] = (t−1)/(α+ t−1). Conversely, the value
ct = 0 indicates that θt takes a new value distributed according to
G0 with probability Pr[ct = 0;α, t] = α/(α + t − 1). Thus, the
joint distribution of θt and ct given θ1:t−1 = {θ1, · · · ,θt−1} can
be written as follows:

p(θt, ct|θ1:t−1;α) = p(θt|θ1:t−1, ct)Pr[ct;α, t], (5)

where:
p(θt|θ1:t−1, ct) = G0(θt)δ0(ct) +

1

t− 1

t−1∑
j=1

δθj (θt)δ1(ct).

Note that a high value of the scale parameter α introduced in (4)
favors the occurrence of a high number of different modes.

3. BAYESIAN MODELING OF THE PROBLEM
The problem is to jointly estimate the dynamics of the mobile
equipped by the GPS receiver and the pseudo-range noise distribu-
tion. In the following, the dynamics of the mobile is described by
a set of variables contained in the state vector xt of size nx. Three
of its components include the position coordinates of the mobile
pt = [xt, yt, zt]

T in the ECEF coordinate system, but the others
depend on the considered motion model.

3.1. GPS measurement equation

The estimation of the state vector xt is based on the measurement
vector Zt = [Z1

t , · · · , Znt
t ]T storing the pseudo-ranges from nt

satellites at time instant t. In the following, the upper-script k de-
notes the kth satellite. The kth component of the column vector Zt
can be expressed as follows:

Zkt = hkt (xt) + vkt , h
k
t (xt) = ‖pt − pkt ‖+ bt, (6)

where pkt = [xkt , y
k
t , z

k
t ]T contains the 3 position coordinates of the

satellite k and ‖.‖ is the Euclidian norm. Furthermore, bt denotes the
GPS receiver clock offset with respect to the GPS reference time.
Finally, vkt is the additive noise affecting the kth pseudo-range
whose PDF is influenced by the multipath and hence assumed un-
known. According to (1), we model this PDF denoted F k as a
DPM of mixing distribution Gk ∼ DP(Gk0 , α

k), where Gk0 and
αk are, respectively, the base distribution and the scale parame-
ter. Note that unlike Rabaoui’s work, a different DPM is used for
each pseudo-range noise. In the following we use the compact
notations θt =

[
(θ1
t )
T , · · · , (θnt

t )T
]
, α =

[
α1, · · · , αnt

]T and
ct = [c1t , · · · , cnt

t ]T .
By taking advantage of the Polya urn representation in (5), the den-
sity estimation problem reduces to computing the joint posterior
distribution of the latent and auxiliary variables p(θ1:t, c1:t|Z1:t),
where Z1:t = {Z1, · · · ,Zt} and c1:t = {c1, · · · , ct}.
Therefore, our purpose in the following is to recursively estimate
from the sets of measurements Z1:t the extended state vector
Xt = [xTt ,θ

T
t , c

T
t ]T . Before expressing the transition distribu-

tion of Xt, note that it can be factorized by using Bayes’ rule and by
taking into account the independence between the random variables
as follows:

p(Xt|X1:t−1;α) = p(xt|xt−1)p(θt|θ1:t−1, ct)Pr[ct;α, t]. (7)

3.2. Prior distributions of the state vector components

A) The state vector xt =
[
pTt , ṗ

T
t , bt, dt

]T
is assumed to satisfy

a second-order model, with ṗt = [ẋt, ẏt, żt]
T a vector containing

the 3 velocity coordinates of the mobile and dt the receiver clock
drift with respect to the GPS reference time. The evolution of xt is
described by the transition law:

p(xt|xt−1) = N (xt; Fxt−1,Q), (8)

where F and Q are block diagonal matrices. These latter are for
instance detailed in [11].

B) The transition PDF for the kth latent variable θkt is given by
(4). A classical choice for the base distribution Gk0(θkt ) is a Normal
Inverse Gamma (NIG) distribution that makes it possible to jointly
define a prior model for a mean and a variance as follows:

Gk0(θkt ) = NIG(θkt ;µ0, ν0, α0, β0), (9)
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with NIG(θkt ;µ0, ν0, α0, β0) = N (µkt ;µ0,
φk
t
ν0

)IG(φkt ;α0, β0)
and IG the Inverse-Gamma PDF. Taking advantage of the indepen-
dence between the components of θt given θ1:t−1 and ct, one can
write the joint transition PDF of θt as follows:

p(θt|θ1:t−1, ct) =

nt∏
k=1

p(θkt |θk1:t−1, c
k
t ). (10)

4. RAO-BLACKWELLIZED PARTICLE FILTER

The above-described hierarchical model allows us to apply an effi-
cient estimation algorithm known as RBPF. It is based on the follow-
ing factorization of the posterior PDF:

p(X1:t|Z1:t) = p(x1:t|θ1:t,Z1:t)p(θ1:t, c1:t|Z1:t). (11)

In our case, the transition model in (8) is linear/Gaussian and con-
ditionally on θ1:t, the measurement model in (6) is weakly non lin-
ear/Gaussian. Then, conditionally on θ1:t, the EKF can be used as
a nearly optimal estimator of the sequence of states x1:t. As for
the latent variables θ1:t and the indicator variables c1:t, they can be
estimated using a PF as follows:

P̂N (θ1:t, c1:t|Z1:t) =

N∑
i=1

w
(i)
t δ

θ
(i)
1:t,c

(i)
1:t

(θ1:t, c1:t), (12)

where θ
(i)
1:t and c

(i)
1:t are the so-called particles and w(i)

t are the posi-
tive weights the sum of which is equal to 1. Each particle is associ-
ated with an EKF that recursively computes the conditional posterior
mean estimate of xt, denoted x̂t|t(θ

(i)
1:t), along with the estimation

error covariance matrix Pt|t(θ
(i)
1:t).

Finally, the estimated marginal PDF of xt is computed as a mixture
of Gaussian distributions:

P̂N (xt|Z1:t) =

N∑
i=1

w
(i)
t N

(
xt; x̂t|t(θ

(i)
1:t),Pt|t(θ

(i)
1:t)
)
. (13)

This algorithm requires the knowledge of the scale vector α. The
proposed approach for its estimation is detailed in the next section.

5. ONLINE EM ALGORITHM

5.1. Block EM and exponential family of distributions

The EM algorithm is an iterative optimization procedure that makes
it possible to solve ML and MAP estimation problems when the like-
lihood p(Z1:T ;α) is not available in a closed form. The EM algo-
rithm involves the complete-data likelihood p(X1:T ,Z1:T ;α) that
can be factorized as follows:

p(X1:T ,Z1:T ;α) =

T∏
n=1

p(Zn|Xn)p(Xn|X1:n−1;α)︸ ︷︷ ︸
p(Xn,Zn|X1:n−1;α)

. (14)

The first step, known as E-step, consists in computing theQ-function
as follows:

Q(α;αi−1) =

Ep(X1:T |Z1:T ;αi−1)[log p(X1:T ,Z1:T ;α)] + log p(α),
(15)

with αi−1 the estimate of α from the previous iteration and p(α) an
user-chosen prior distribution on α necessary when a MAP estimate

is desired. Note that computing the expectation involved in (15) re-
quires to solve an optimal smoothing problem.
Then, the M-step consists in maximizing (15) over α to yield the
parameter estimate αi at iteration i. In practice, the M-step can-
not always be performed explicitly by a simple function evaluation.
Usually, this problem is alleviated when the complete-data likeli-
hood belongs to the EFD as it is often the case in practice. In this
case, we can write:

p(XT ,ZT |X1:T−1;α) = h(X1:T ,ZT )

× exp
(
〈s(X1:T ,ZT ),Ψ(α)〉 −A(α)

)
,

(16)

where s(X1:T ,ZT ) is the vector of sufficient statistics, Ψ(α) and
A(α) are two functions of α and 〈., .〉 denotes the inner product
operator.
Combining (14), (15) and (16), one can write a normalized version
of the E-step as follows:

Q(α;αi−1)

T
=
〈
S(αi−1),Ψ(α)

〉
−A(α) +

log p(α)

T
, (17)

where we omitted the first term that does not depend on α and with:

S(αi−1) =
1

T
Ep(X1:T |Z1:T ;αi−1)

[
T∑
n=1

s(X1:n,Zn)

]
, (18)

the so-called smoothed additive functional.
Often, the M-step can be performed explicitly by evaluating a func-
tion Λ as follows:

αi = Λ(S(αi−1)). (19)

It should be noted that this EFD formulation is a key ingredient in
order to build an online version of the EM algorithm.

5.2. Online EM formulation

The online EM consists in processing sequentially the measure-
ments. In [7] the author introduces an auxiliary function that makes
it possible to develop a recursive resolution of the smoothing prob-
lem involved in (18). At time instant t, it takes the following form:

ρ(Xt;αt−1)=
1

t
Ep(X1:t−1|Z1:t,Xt;αt−1)

[
t∑

n=1

s(X1:n,Zn)

]
.

(20)
It should be noted that contrary to [7] we have to keep the whole
history X1:n in the sufficient statistics vector due to the DPM Polya
urn representation in (5). Equation (20) can be combined with the
filtering density at time t denoted p(Xt|Z1:t;αt−1) as follows to
compute the functional in (18):

S(αt−1) =

∫
ρ(Xt;αt−1)p(Xt|Z1:t;αt−1)dXt. (21)

After some simplifications based on Bayes’ rule and defining Kt =
1/t one obtains from (20) the following recursion:

ρ(Xt;αt−1) =

∫ [
Kts(X1:t,Zt) +

(
1−Kt

)
ρ(Xt−1;αt−1)

]
× p(Xt−1|Z1:t−1,Xt;αt−1)dXt−1. (22)

However, (22) cannot be computed directly because it depends on
ρ(Xt−1;αt−1) whereas we only have access to ρ(Xt−1;αt−2)
computed at the previous iteration. This problem can be alleviated
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by using a stochastic approximation (SA) as in [7] and [8]. Thus,
(22) is replaced by the following recursion:

ρ(Xt;αt−1) =

∫ [
γts(X1:t,Zt) +

(
1− γt

)
ρ(Xt−1;αt−2)

]
× p(Xt−1|Z1:t−1,Xt;αt−1)dXt−1, (23)

where γt = t−β denotes the SA step-size to be chosen by the
practitioner, with β ∈ ]0.5, 1]. Furthermore, the integral in (21)
is intractable. It can be computed by using the weighted sam-
ples of the PF that estimates the posterior distribution of the state
vector Xt in (12):

Ŝ(αt−1) =

N∑
i=1

w
(i)
t ρ

(i)
t , (24)

with ρ
(i)
t = γts(X

(i)
1:t,Zt) + (1− γt)ρ(i)

t−1. Finally, the estimate of
α at time instant t is obtained as αt = Λ(Ŝ(αt−1)).

5.3. Estimation of the scale parameter

In our case, the conditional complete-data likelihood can be written
as follows:

p(Xt,Zt|X1:t−1;α)

= p(Zt|Xt)p(xt|xt−1)p(θt|θ1:t−1, ct)︸ ︷︷ ︸
h(X1:t,Zt)

Pr[ct;α, t]. (25)

Thus, by noting that:

logPr[ct;α, t] =
nt∑
k=1

[
ckt log

(
t− 1

αk + t− 1

)
+ (1− ckt ) log

(
αk

αk + t− 1

)]
,

(26)
the equation (26) can be rewritten in the EFD form:

logPr[ct;α, t] =
〈
s(X1:t,Zt),Ψ(α)

〉
−A(α), (27)

with

s(X1:t,Zt) =
[
c1t , · · · , cnt

t , 1− c
1
t , · · · , 1− cnt

t

]T
,

Ψ(α) =

[
log
( t− 1

α1 + t− 1

)
, · · · , log

( t− 1

αnt + t− 1

)
,

log
( α1

α1 + t− 1

)
, · · · , log

( αnt

αnt + t− 1

)]T
.

(28)

Finally, by inserting (28) in (24), we can compute the smoothed ad-
ditive functional Ŝ(αt−1). The latter is used to compute the Q-
function to be maximized in (17). To prevent the scale parameter
estimates from taking negative values, we select a Gamma prior for
α such as in [12]. In this case, it can be shown that these estimates
are obtained as the only positive root of a second order polynomial.

6. SIMULATION RESULTS
Our algorithm is tested on simulated GPS data corresponding to
a nearly constant velocity trajectory of 100 s in an urban envi-
ronment. The receiver has 6 satellites in view during the whole
trajectory. The pseudo-ranges are generated by a routine of our
own where GPS almanac data are used to compute the satel-
lite positions. To simulate the multipath, a white noise is added

on 3 of the satellite pseudo-ranges. This noise is distributed
according to a 3-component Gaussian mixture:

0.4N (0, 102 + 402) + 0.3N (0, 102 + 802) + 0.3N (50, 102).

The remainder of the pseudo-ranges are assumed to be in their nomi-
nal state where the satellite pseudo-ranges are affected by an additive
white Gaussian noise of standard deviation equal to 10 m.
Firstly, to show the relevance of estimating the PDF of each pseudo-
range noise we compare our algorithm with an EKF that does not
consider the influence of multipath. Secondly, to illustrate the in-
terest of estimating the scale parameter of the DPM associated with
each pseudo-range noise, we also run the RBPF described in sec-
tion 4 with a fixed value of αk set equal to 10, for each DPM. For
our algorithm as for the standard RBPF, 5000 particles were used.
Fig. 1 shows the estimated PDF along with the real PDF for one
of the pseudo-ranges degraded by multipath. With initial values of
αk equal to 10, the final values estimated by the EM algorithm are
α1 = 1.04, α2 = 1.01 and α3 = 1.03. Finally, Fig. 2 shows
the evolution of the square root of the horizontal estimation mean-
square error (RMSE) associated with each tested algorithms. It was
computed from 50 runs corresponding to different realizations of the
pseudo-range noises. It should be noted that the proposed approach
outperforms the other algorithms. Furthermore, it guarantees good
performance even in our simulation protocol that considers 3 out of
6 pseudo-ranges permanently affected by multipath.
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Fig. 1. Estimated PDF (plain curve) and true PDF (dashed curve)
of a pseudo-range noise affected by multipath.
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Fig. 2. Evolution of the RMSE for the algorithm with the estimation
of α (plain curve), with a fixed value of α = 10 (dashed curve) and
for the EKF-based algorithm (dotted curve).

7. CONCLUSIONS AND PERSPECTIVE

This paper addresses the problem of multipath in GPS navigation.
In the continuity of recent works, we propose to model the GPS
pseudo-range noises as DPM. The latter are well-suited to capture
the multiple modes of their distributions in a dense urban area. Our
contribution is to estimate the DPM scale parameters by means of a
sequential online Monte Carlo EM algorithm. To ensure the positiv-
ity of the estimates, we regularize the ML estimates by introducing
a Gamma prior. Simulation results show the efficiency of our algo-
rithm in a difficult multipath scenario. As a perspective, it would
be of interest to consider time-varying DPM due to the variability
of the multipath environment. Furthermore, an approximation of the
optimal simulation law for the latent variables could be designed to
reduce the number of particles needed in our algorithm.
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