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ABSTRACT

This paper is devoted to an improved variational Bayesian
method. Actually, variational Bayesian issue can be seen as a
convex functional optimization problem. Our main contribu-
tion is the adaptation of subspace optimization methods into
the functional space involved in this problem. We highlight
the efficiency of our methodology on a linear inverse prob-
lem with a sparse prior. Comparisons with classical Bayesian
methods through a numerical example show the notable im-
proved computation time.

Index Terms— variational Bayesian, subspace optimiza-
tion, sparse prior.

1. INTRODUCTION

Bayesian inference is a commonly used methodology for ill-
posed inverse problems in signal and image processing. Its
objective is to estimate unknown parameters from a poste-
rior distribution which is derived from prior information and
the information coming from the data thanks to Bayes’ rule.
Nevertheless, this posterior distribution depends closely on
the partition function which is generally unknown and there-
fore cannot be explicitly determined. So the main challenge
is to retrieve this posterior distribution.

In this context, two main types of methods are employed,
stochastic and analytic approximations. The first one is
based on Monte Carlo Markov Chains (MCMC) [1], where
samples of the desired distribution are simulated. However
this method is notoriously numerically expensive. Therefore
MacKay in [2], see also [3] for a survey, proposed variational
Bayesian approach (VBA) aiming to determine analytic ap-
proximations of the posterior law. In this case, the objective
is to find a simpler probability density function (pdf) close to
the posterior law. This problem is thus formulated as a convex
infinite-dimensional optimization problem, whose resolution
results in an analytic approximation of the true posterior dis-
tribution. However, this approximation has no explicit form
and has to be approximated by iterative methods, such as
the Gauss Seidel one which is known to be time consum-
ing. The classical Bayesian methodology is thus not efficient,
especially when dealing with large dimensional problems.

Recently, a different method has been introduced in [4] in
order to improve variational Bayesian methodology. The
main idea is to transpose a classical optimization method, the
gradient descent, into the space of pdf. Mathematical details
and convergence proof can be found in [5].

A natural idea to improve the method of [4] is to consider
a new descent direction. The first possible choice would be to
integrate conjugate gradient methods which converge faster
than the gradient descent due to the introduction of memory in
the direction. Nevertheless, in our context, the space involved
in the optimization problem is no longer a Hilbert space and
there is no notion of conjugate directions.

The main contribution of this paper is to adapt the sub-
space optimization methods [6, 7, 8] to the functional space
involved in variational Bayesian approach. The advantage
of subspace optimization is its generalized descent directions
where Hilbert structure is no longer required. This optimiza-
tion method is based on descent directions which belong to a
subspace of dimension greater than one. This gives more flex-
ibility in the choice of direction and of algorithm step-size,
as a result, subspace optimization methods are more efficient
than conjugate gradient methods [8].

The rest of this paper is organized as follows: in Section
2, we formulate the optimization problem involved; in Sec-
tion 3, we present our subspace based variational Bayesian
method. Section 4 is devoted to the application to a linear
inverse problem whereas in Section 5 simulation results on a
small tomographic problem are given together with a numeri-
cal comparison with classical methods in terms of reconstruc-
tion performances and computation time. Finally Section 6
concludes the paper.

2. STATEMENT OF THE PROBLEM

In the following, y ∈ RM and w ∈ RP denote respectively
the data vector and the unknown parameter vector to be es-
timated whereas p(w), p(w|y) and q(w) represent respec-
tively the prior distribution, the true posterior law and its ap-
proximation.

Variational Bayesian approaches assume that q(w) is sep-
arable. It could be either an assumption of full separability
respectively to all the elements contained in w, or a partial
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one, e.g. where only the separability between the unknown
variables and the hidden ones is considered. The optimal ap-
proximation is obtained by minimizing the Kullback-Leibler
(KL) divergence to the true posterior distribution. However,
the direct computation of KL divergence is intractable since
it depends on the posterior distribution. But as illustrated in
[4, 9], minimizing KL divergence is equivalent to maximiz-
ing the negative free energy F(q(w)) which depends on the
joint distribution p(y,w). The negative free energy is defined
as follows:

F(q(w)) =

∫
RN

q(w) log
p(y,w)

q(w)
dw. (1)

It is therefore calculable and used hence as an alternative
to the KL divergence.

The variational Bayesian problem could be formulated as:

qopt = argmaxqF(q(w)), s.t. q is a separable p.d.f. (2)

Note that as the space of pdf is not an Hilbert space, clas-
sical optimization methods are not directly applicable to this
problem. Problem (2) is thus solved in [4] by an approach
based on the exponentiated gradient method [10], where at
each iteration the approximate distribution q is obtained as a
product of the previous iterate and the exponential of the gra-
dient.

To obtain a more efficient method, we have transposed
the subspace optimization method into the resolution of our
functional optimization problem as in [4].

3. OUR PROPOSED METHOD

Let us firstly describe the subspace optimization algorithms
[6, 8]. The iteration count is hereafter denoted by k ∈ N.
Generally speaking, subspace optimization algorithms in a
Hilbert space use the following iteration formula:

xk+1 = xk + dk = xk +Dksk, (3)

where dk is the considered descent direction which is a com-
bination of several directions. Here Dk gathers a set of I di-
rections spanning the subspace, with I larger than one. More-
over, the vector sk denotes the step-size along each direction
contained in Dk. In [6] a subspace spanned by the opposite
gradient and the previous direction, i.e. Dk = [−gk,dk−1],
has been used. Chouzenoux et al. [8] have addressed a discus-
sion about constructions of the subspace as well as the dimen-
sion of the subspace through simulation results on several im-
age restoration problems. It has been shown that the subspace
constructed by the gradient and the memory to one previous
direction gives the best performance in terms of implemen-
tation complexity and computation time. Consequently, we
have adopted this type of subspace.

As discussed in Section 2, we consider the optimization
structure constructed in [4],

qk+1(w) = qk(w)hk(w), (4)

where hk ∈ L1(qk) is a positive function. The simplest way
to obtain a pdf is to impose an exponential structure for hk,
therefore,

hk(w) = exp(dk) = exp(Dksk), (5)

with
Dk = [df(qk,w), dk−1], (6)

where df(qk,w) is a term obtained from the Gateaux differ-
ential of the negative free energy F at kth estimate qk, see [5]
for details.

The dimension of the subspace decides that the multi-
dimensional step is of dimension two: s = [s1, s2]

T . We can
derive a new estimate depending on the step-size s by using
(5), (6) and the hypothesis of separability for q,

qs(w) = qk(w) exp(s1df(q
k,w) + s2d

k−1)

= Kk
∏
i

qki

(
exp

(
⟨log p(y,w)⟩∏

j ̸=i q
k
j

)
qki

)s1 (
qki

qk−1
i

)s2

(7)

where Kk is a normalization constant depending on the step-
size s and ⟨·⟩q = Eq[·]. We introduce here an auxiliary func-
tion as follows:

qri = exp
(
⟨log p(y,w)⟩∏

j ̸=i q
k
j

)
. (8)

The distribution qs(w) could therefore be rewritten as

qs(w) = Kk
∏
i

qki

(
qri
qki

)s1 ( qki
qk−1
i

)s2

. (9)

The determination of the step-size is a crucial and delicate
task. Let us define fk(s) = F(qk exp(Dks)), the optimal
step-size is then defined by

(sopt)k = argmax
s∈R2

fk(s). (10)

The determination of this optimal step-size is generally
expensive. Therefore, in this work, we have defined a subop-
timal step-size. Firstly, the second order Taylor expansion of
fk(s) at origin is taken as its local approximation,

f̃k(s) = fk(0) +

(
∂fk

∂s

∣∣∣∣
s=0

)T

s+
1

2
sT
(
Hk|s=0

)
s, (11)

where ∂fk

∂s and Hk denote respectively the gradient vector

and the Hessian matrix with Hk
ij =

∂2fk

∂si∂sj
, i, j = 1, 2.

Then we take the suboptimal step-size that maximizes the
quadratic approximation f̃k(s), whose maximum is achieved
at the point where its derivative vanishes. We have therefore,

(ssubopt)k = −
(
Hk|s=0

)−1 ∂fk

∂s

∣∣∣∣
s=0

. (12)
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We then obtain the new estimation by substituting the sub-
optimal step-size into (9).

The first advantage of our proposed method is that up-
dating all the distributions (qi)i=1,...,P is performed in paral-
lel which leads to a significant acceleration compared to the
classical variational Bayesian method. Secondly, it exploits
a generalized direction optimization algorithm. At each iter-
ation, an optimization of the direction in a subspace is per-
formed. As a result, our approach is more efficient than the
gradient based variational Bayesian approach.

4. APPLICATION TO INVERSE PROBLEM

In this section, we consider the application of the method de-
veloped in Section 3 to an ill-posed inverse problem with a
sparse prior.

4.1. Posterior distribution

A classical linear forward model is considered:

y = Ax+ ϵ, (13)

where x ∈ RN denotes the unknown parameters to be esti-
mated. A is a known matrix of dimension M × N and ϵ is
the white Gaussian noise, i.e. ϵ ∼ N (0, σ2

ϵI).
We take sparse prior into account by considering a sep-

arable Student-t distribution [11]. Student-t distribution de-
pends on a shape parameter and small values of this param-
eter give heavy-tailed probability density functions. Further-
more, it can be written as a Vector Gaussian Scale Mixture,
see [12, 13] which has a Gaussian structure with an inverse
variance given by hidden variables (zi)i=1,...,N of Gamma
distribution. Hence, the prior distribution is written as

p(xi) =

∫
R
N (xi|0, σ2

p/zi)G(zi|ν/2, ν/2)dzi

∝
∫
R

√
zi√

2πσp

e
−zix

2
i

2σ2
p z

ν/2−1
i e−ziν/2dzi, (14)

where N and G respectively denote the Normal and Gamma
distribution.

According to the considered model, the posterior distribu-
tion is thus given by:

p(x, z|y) ∝ σ−M
ϵ exp

[
−∥y −Ax∥2

2σ2
ϵ

]
×

N∏
i=1

√
zi

σp
exp

[
−zix

2
i

2σ2
p

]
z
ν/2−1
i e−ziν/2.

(15)

We can see from (15) that the advantage of Student-
t prior is to give conjugate laws, e.g. p(x|z) is Gaussian
which is conjugate for the Gaussian likelihood p(y|x, z).
Consequently, the posterior law of x is still Gaussian. This
conjugacy is needed in the development of efficient VBA.

4.2. Variational Bayesian algorithm

In this section, we apply the method proposed in Section 3
to the model given in Section 4.1. Since the major objective
of this application is to illustrate the efficiency advantage of
our method, we only derive the supervised algorithm, but the
extension to unsupervised one is possible and will be done in
a future work.

In this case, the unknowns are w = (x, z). Let us assume
that

q(x, z) =
∏
i

qi(xi)
∏
j

q̃j(zj). (16)

Due to the use of the conjugate priors, variational Bayesian
algorithms yield a Gaussian distribution of mean mk(i) and
variance σ2

k(i) for qki (xi)i=1,...,N , and a Gamma distribution
with shape and rate parameters denoted by ak(j) and bk(j)
for q̃j(zj)j=1,...,N . As a result, updating the distributions
(qki )i=1,...,N and (q̃kj )j=1,...,N is performed by updating their
parameters.

One can see from (15) that the conditional posterior
p(z|x,y) is separable so that the classical variational Bayesian
approach [3] leads to an explicit solution for (q̃k+1

j )j=1,...,N ,
as shown in [4, 11]. Concerning x, the posterior distribution
is more intricate. In this case, we prefer adopting our pro-
posed subspace-based method rather than using the classical
variational Bayesian approach. The updating equation de-
fined by (9) is then used. Altogether, our problem could be
solved by using the following algorithm.

Algorithm 1 Proposed algorithm

1. Initialize (q0i )i=1,...,N and (q̃0j )j=1,...,N

2. Update the parameters of Gamma distributions
(q̃k+1

j )j=1,...,N with classical VBA
3. Compute auxiliary functions (qri )i=1,...,N using Eq. (8)

4. Determine the subspace:
[
qr

qk
, qk

qk−1

]
5. Compute the step-size using Eq. (12)
6. Update means and variances of (qk+1

i )i=1,...,N using
Eq. (9)

7. Go back to 2 until convergence

In Algorithm 1, Step 3 to Step 6 are devoted to update the
parameters of the Gaussian distribution.

5. EXPERIMENTAL RESULTS

Our proposed algorithm is evaluated through a comparison
with the MCMC approach, classical VBA with hypothesis
of full separability (VBFS) as (16), classical VBA with the
partial separability only between x and z (VBPS) and the
gradient-like variational Bayesian approach (Grad) proposed
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Fig. 1: Data: sinogram composed of 32 projections using 95
detector cells.

in [4]. These five approaches are applied to a tomographic
problem with synthetic test data.

The synthetic data (see Fig. 1) is generated from a small
test image of dimension 64 × 64 (see Fig. 2(a)), which is
composed of 7 peaks with magnitudes ranging from 0.5 to
1. The data used in the simulation are the projections with
a parallel-beam geometry at 32 angles uniformly distributed
on [0, π[. Each projection is collected by 95 detection cells.
A Gaussian noise with standard deviation equal to 0.3 is also
added. Thus the data has a relatively low signal-to-noise ratio
(see Fig. 1). The number of unknowns (64 × 64 = 4096)
is much larger than the number of data (32 × 95 = 3040).
Consequently, we must address an ill-posed problem.

All the approaches have been implemented with the same
initialization: zero as mean and one as variance of the un-
known x, the hyperparameters σ2

ϵ , σ2
p and ν set to 1, 0.05 and

0.1. We show in Fig. 2 the true image and reconstructions
obtained by the five algorithms mentioned above.

The reconstruction results shown in Fig. 2(e) and Fig. 2(f)
have the similar qualities to that obtained by the two classical
variational Bayesian approaches, which are given in Fig. 2(c)
and Fig. 2(d). The asymptotic results obtained by MCMC ap-
proach are theoretically the best ones since it leads to the true
posterior distribution rather than its approximation. However
in limited-time, the obtained samples are not able to fit its
asymptotic results, which explains the relatively bad recon-
struction shown in Fig. 2(b).

Table 1: PERFORMANCE COMPARISON IN TERMS OF
PSNR(dB)/CPU TIME(S).

Method MCMC VBFS VBPS Grad Proposed
PSNR(dB) 28.8 35.1 35.2 35.9 35.9

Time(s) 69313.8 723.5 327.6 23.4 3.2

We also provide numerical results indicating the advan-
tage of our proposed algorithm in terms of computation time.
The peak signal to noise ratios (PSNR) and the computation
time are given in Tab. 1. We can see that our proposed ap-
proach has managed to achieve the reconstruction of highest
PSNR (35.9dB) by taking just 3.2 seconds, which is 7 times

(a) (b)

(c) (d)

(e) (f)

Fig. 2: Images are presented with the same inverse grayscale:
(a) True image, (b) MCMC Gibbs approach, (c) classical
VBA with hypothesis of full separability (16) (VBFS), (d)
classical VBA with hypothesis of partial separability between
x and z (VBPS), (e) gradient-like VBA (Grad) (f) our ap-
proach.

quicker than the gradient-like algorithm, and more than 100
times faster than the classical VBAs and 20000 faster than the
MCMC Gibbs approach for this small tomographic problem.

6. CONCLUSIONS

One efficient iterative variational Bayesian approach based on
the subspace optimization method has been proposed. Nu-
merical experimental results on a tomographic problem have
been given to illustrate the advantage of our approach in terms
of time efficiency. Since our proposed approach can be per-
formed without any matrix inversion and in parallel for all the
separated terms, it can be employed as well for large dimen-
sional inverse problems.
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