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ABSTRACT
Each of a large number of nodes takes a measurement in se-
quence to decide between two hypotheses about the state of
the world. Each node also has available the decisions of some
of its immediate predecessors and uses these and its own mea-
surement to make its decision. Each node broadcasts its de-
cision through a binary symmetric channel, which randomly
flips the decision. The question treated here is whether there
exists a decision strategy consisting of a sequence of likeli-
hood ratio tests such that the decisions approach the true hy-
pothesis as the number of nodes increases. We show that if
each node learns from bounded number of predecessors, then
the decisions cannot converge to the underlying truth. We
show that if each node learns from all predecessors then the
decisions converge in probability to the underlying truth when
the flipping probabilities are bounded away from 1/2. We
also derive, in the case when the flipping probabilities tend to
1/2, a condition on the convergence rate of the flipping prob-
abilities that is required for the decisions to converge to the
true hypothesis in probability.

Index Terms— Decentralized detection, social learning.

1. INTRODUCTION

We consider a large number of nodes, which sequentially
make decisions between two hypotheses H0 and H1. At
stage k, node ak takes a measurement Xk (called its private
signal), receives the decisions of its mk < k immediate pre-
decessors, and makes a binary decision dk = 0 or 1 about
the prevailing hypothesis H0 or H1, respectively. It then
broadcasts a decision to its successors. Note that mk is often
referred to as the memory size. A typical question is this:
Can these nodes asymptotically learn the underlying true hy-
pothesis? In other words, does the decision dk converge (in
probability) to the true hypothesis as k → ∞? If so, what is
the convergence rate of the error probability?

One application of the sequential hypothesis testing prob-
lem is decentralized detection in sensor networks, in which
case the set of nodes represents a set of spatially distributed
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sensors attempting to jointly solve the hypothesis testing
problem. Because of limited resources for processing and
transmitting data, each sensor aggregates its measurement
and the observed decisions from the previous sensors into a
much smaller message (e.g., a 1-bit decision) and then sends
it to other sensors for further aggregation. A central question
is whether we can design a sequence of decision rules to
aggregate the spatially distributed information such that the
decisions converge to the underlying truth as the number of
sensors increases.

Another application is to social learning in multi-agent
networks, in which case the set of nodes represents a set
of agents trying to learn the underlying truth (also known
as the state of the world). Each agent makes a decision
based on its own measurement and what it learns from the ac-
tions/decisions of the previous agents. In this case, we usually
assume that each agent uses a myopic decision rule to mini-
mize a local objective function; for example, the probability
of error is locally minimized using the Bayesian likelihood
ratio test with a threshold given by the ratio of the prior prob-
abilities. The question in this setting is whether the agents in
the social network can asymptotically learn the state of the
world.

The research on our problem begins with a seminal pa-
per by Cover [1], which considers the case where each node
only observes the decision from its immediate previous node,
i.e., mk = 1 for all k. This structure is also known as a
serial network or tandem network and has been studied ex-
tensively in [1]–[14]. We use Pj and πj to denote the proba-
bility measure and the prior probability associated with Hj ,
j = 0, 1, respectively. Cover [1] shows that if the (log)-
likelihood ratio for each private signal Xk is bounded almost
surely, then the (Bayesian) error probability Pk

e = π0P0(dk =
1)+π1P1(dk = 0), using a sequence of likelihood ratio tests,
does not converge in probability to 0 as k →∞. Conversely,
if the likelihood ratio is unbounded, then the error probability
converges to 0. In the case of unbounded likelihood ratios for
the private signals, Veeravalli [8] shows that the error prob-
ability converges sub-exponentially with respect to the num-
ber k of nodes in the case where the private signals are inde-
pendent and identically Gaussian distributed. Tay et al. [10]
show that the convergence is in general sub-exponential and
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derive an upper bound for the convergence rate of the error
probability in the tandem network. Lobel et al. [11] derive a
lower bound for the convergence rate of the error probability
in the case where each node learns randomly from one pre-
vious node (not necessarily its immediate predecessor). In
the case of bounded likelihood ratios, Drakopoulos et al. [12]
provide a non-Bayesian decision strategy, which results in
convergence of the error probability.

At the other extreme, consider the situation when each
node can observe all the previous decisions, that is, mk =
k − 1 for all k. This scenario was first studied in the con-
text of social learning [15],[16], where each node uses the
Bayesian likelihood ratio test to make its decision. In the case
of bounded likelihood ratios for the private signals, the au-
thors of [15] and [16] show that the error probability does
not converge to 0, resulting in a wrong decision with positive
probability. In [17], we show that in balanced binary trees,
the decisions converge to the right decision even if the likeli-
hood ratios of signals converge to 1 as the number of nodes in-
creases. We further studied in [18] the convergence rate of the
error probability in more general tree structures. In the case
of unbounded likelihood ratios for the private signals, Smith
and Sorensen [19] study this problem using martingales and
show that the error probability converges to 0. Krishnamurthy
[20],[21] studies this problem from the perspective of quick-
est time change detection. Chamley [22] provides a conver-
gence rate analysis of the error probability in these structures.
Acemoglu et al. [23] show that the nodes can asymptotically
learn the underlying truth in more general network structures.

Most previous work including those reviewed above as-
sume that the communication channels are perfect. We con-
sider the situation where each broadcast decision is flipped
with a certain probability, modeled by a binary symmetric
channel. This situation was not considered in earlier stud-
ies. If the broadcast decision of a node is flipped, then all the
successors of that node observe that flipped decision. We as-
sume that each node uses a likelihood ratio test to generate its
binary decision. We call the sequence of likelihood ratio tests
a decision strategy. We want to know whether or not there ex-
ists a decision strategy such that the node decisions converge
in probability to the underlying true hypothesis.

We use the following notation to characterize the scaling
law of the asymptotic rate. Let f and g be positive functions
defined on positive integers. We write f(N) = O(g(N)) if
there exists a positive constant c1 such that f(N) ≤ c1g(N)
for sufficiently large N . We write f(N) = Ω(g(N)) if there
exists a positive constant c2 such that f(N) ≥ c2g(N) for
sufficiently large N .

We show that if each node can only learn from a bounded
number of immediate predecessors, then for any decision
strategy, the error probabilities cannot converge to 0. We also
show that if each node can learn from all previous nodes, i.e.,
mk = k − 1, then the error probabilities converge to 0 using
the myopic decision strategy, provided the flipping probabil-

ities are bounded away from 1/2. In this case, we show that
the error probabilities converge to 0 as Ω(k−2). In the case
where the flipping probabilities converge to 1/2, we derive a
necessary condition on the convergence rate of the flipping
probabilities (that is, how fast they must converge) such that
the error probabilities converge to 0. More specifically, we
show that if there exists p > 1 such that the flipping probabil-
ities converge to 1/2 as O(1/k(log k)p), then it is impossible
for the error probability to converges to 0. Therefore, only
if the flipping probabilities converge as Ω(1/k(log k)p) for
some p ≤ 1 can we hope for asymptotic learning.

This paper is a summary of results in a more extended
paper [24]. We have omitted all the proofs for lack of space.
A comprehensive treatment with proofs is presented in [24].
We also study in [24] the case where the broadcast message
at each node is subject to random erasure.

2. PRELIMINARIES

We use P to denote the underlying probability measure. We
use πj to denote the prior probability (assumed nonzero) and
Pj to denote the probability measure associated with Hj , j =
0, 1. At stage k, node ak takes a measurement Xk of the
scene and makes a decision dk = 0 or dk = 1 about the pre-
vailing hypothesis H0 or H1. It then broadcasts its decision
dk through a binary symmetric channel, which randomly flips
dk into d̂k. The decision dk of node ak is made based on the
private signal Xk and the sequence of potentially corrupted
decisions D̂mk

= {d̂1, d̂2, . . . , d̂mk
} received from the mk

immediate predecessor nodes using a likelihood ratio test.
Our aim is to find a sequence of likelihood ratio tests such

that the probability of making a wrong decision about the state
of the world tends to 0 as k → ∞. Before proceeding, we
introduce the following definitions and assumptions:

1. The private signal Xk takes values in a set S, endowed
with a σ-algebra S. We assume that Xk is independent
of the broadcast history D̂mk

. Moreover, the Xks are
mutually independent and identically distributed with
distribution PX

j , under Hj , j = 0, 1. (Note that PX
j

is a probability measure on the σ-algebra S.) We as-
sume that the underlying hypothesis, H0 or H1, does
not change with k.

2. The two probability measures PX
0 and PX

1 are equiva-
lent; i.e., they are absolutely continuous with respect to
each other. In other words, if A ∈ S , then PX

0 (A) = 0
if and only if PX

1 (A) = 0.

3. Let the likelihood ratio of a private signal s ∈ S be

LX(s) =
dPX

1

dPX
0

(s),

where dPX
1 /dPX

0 denotes the Radon–Nikodym deriva-
tive (which is guaranteed to exist because of the as-
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sumption that the two measures are equivalent). We
assume that the likelihood ratios for the private signals
are unbounded; i.e., for any set S′ ⊂ S with probability
1 under the measure (PX

0 + PX
1 )/2, we have

inf
s∈S′

dPX
1

dPX
0

(s) = 0 and sup
s∈S′

dPX
1

dPX
0

(s) =∞.

4. Suppose that θ is the underlying truth. Let b̄k = P(θ =
H1|Xk), which we call the private belief of ak. By
Bayes’ rule, we have

b̄k =

(
1 +

π0
π1

1

LX(Xk)

)−1
. (1)

5. Recall that node ak observes mk decisions D̂mk
from

its immediate predecessors. Let pkj be the conditional
probability mass function of D̂mk

under Hj , j = 0, 1.
The likelihood ratio of a realization Dmk

is

Lk
D(Dmk

) =
pk1(Dmk

)

pk0(Dmk
)

=
P1(D̂mk

= Dmk
)

P0(D̂mk
= Dmk

)
.

6. Let bk = P(θ = H1|D̂mk
), which we call the public

belief of ak. We have

bk =

(
1 +

π0
π1

1

Lk
D(D̂mk

)

)−1
. (2)

7. Each node ak makes its decision using its own mea-
surement and the observed decisions based on a likeli-
hood ratio test with a threshold tk > 0:

dk =

{
1 if LX(Xk)Lk

D(D̂mk
) > tk,

0 if LX(Xk)Lk
D(D̂mk

) ≤ tk.

If tk = π0/π1, then this test becomes the maximum
a-posteriori probability (MAP) test, in which case the
probability of error is locally minimized for node ak. If
tk = 1, then the test becomes the maximum-likelihood
(ML) test. If the prior probabilities are equal, then
these two tests are identical. A decision strategy T
is a sequence of likelihood ratio tests with thresholds
{tk}∞k=1. Given a decision strategy, the decision se-
quence {dk}∞k=1 is a well-defined stochastic process.

8. We say that the system asymptotically learns the under-
lying true hypothesis with decision strategy T if

lim
k→∞

P(dk = θ) = 1.

In other words, the probability of making a wrong de-
cision goes to 0, i.e., limk→∞ Pk

e = 0. The question
we are interested in is this: In each of the two classes of
failures, is there a decision strategy such that the system
asymptotically learns the underlying true hypothesis?

3. MAIN RESULTS

Recall that dk is the input to a binary symmetric channel and
d̂k is the output, which is either equal to dk (no flipping) or
is equal to its complement 1 − dk (flipping). The channel
matrix is given by P(d̂k = i|dk = j), i, j = 0, 1. We as-
sume that P(d̂k = 1|dk = 0) = P(d̂k = 0|dk = 1) = qk,
where qk denotes the probability of a flip. The assumption
of symmetry is for simplicity only, and all results obtained
in this section can be generalized easily to a general binary
communication channel with unequal flipping probabilities,
i.e., P(d̂k = 1|dk = 0) 6= P(d̂k = 0|dk = 1).

Theorem 1. Suppose that there exists C and ε > 0 such that
for all k, mk ≤ C and qk ∈ [ε, 1 − ε]. Then, there does
not exist a decision strategy such that the error probabilities
converge to 0.

Now consider the case where ak can observe all its prede-
cessors: mk = k − 1. We will show that, using the myopic
decision strategy, the error probabilities converge to 0 in the
presence of random flipping when the flipping probabilities
are bounded away from 1/2. We further derive, for the case
where the flipping probabilities converge to 1/2, a necessary
condition on the convergence rate of the flipping probabilities
such that the error probabilities converge to 0.

If we state the conditions on the private signal distribu-
tions in a symmetric way, then it suffices to consider the case
when the true hypothesis is H0. In this case, our aim is to
show that the Type I error probabilities converge to 0, that is,
P0(dk = 1) → 0, or equivalently that the public likelihood
ratio Lk = P1(D̂k)/P0(D̂k) converges to 0. We consider the
myopic decision strategy; that is, the decision made by the
kth node is on the basis of the MAP test. From symmetry
considerations, there is no loss in assuming that qk ≤ 1/2.
We consider two cases:

1) The flipping probabilities are bounded away from 1/2
for all k; i.e., there exists c > 0 such that qk ≤ 1/2− c
for all k. This ensures that the corrupted decision still
contains some useful information about the true hy-
pothesis. We call this the case of uniformly informative
nodes.

2) The flipping probabilities qk converge to 1/2 as k →
∞. This means that the broadcast decisions become in-
creasingly uninformative as we move towards the later
nodes. We call this the case of asymptotically uninfor-
mative nodes.

3.1. Uniformly Informative Nodes

We first show that the error probabilities converge to 0. Recall
that b̄ = P(H1|X) denotes the private belief given by signal
X . Let (G0,G1) be the conditional distributions of the private
belief b̄: Gj(s) = Pj(b̄ ≤ s). These distributions exhibit two
important properties:
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a) Proportionality: This follows easily by Bayes’ rule:

dG1

dG0
(b̄) =

b̄

1− b̄
.

b) Dominance: G1(s) < G0(s) for all s ∈ (0, 1), and
Gj(0) = 0 and Gj(1) = 1 for j = 0, 1. Moreover,
G1(r)/G0(r) is monotone non-decreasing as a func-
tion of r.

In the case of uniformly informative nodes, we can show
that the network asymptotically learn the underlying truth.

Theorem 2. Suppose that the flipping probabilities are
bounded away from 1/2. Then, Pk

e → 0 as k →∞.

The proof of Theorem 2 involves the fact that the pub-
lic likelihood ratio Lk is a martingale under H0. By Doob’s
martingale convergence theorem, a non-negative martingale
converges to a finite limit almost surely.

Suppose that the conditional densities of the private belief
exists. By property a), we can write the conditional densities
of the private belief as follows:

f1(b̄) =
dG1

db̄
(b̄) = b̄ρ(b̄), f0(b̄) =

dG0

db̄
(b̄) = (1− b̄)ρ(b̄),

where ρ(b̄) is a non-negative function. Next we provide a
lower bound on the error probability with respect to the num-
ber of nodes. For simplicity, we assume that ρ(1) is a non-
negative constant. More general cases where ρ(b̄) → 0 as
b̄→ 1 are studied in [24].

Theorem 3. Suppose that the flipping probabilities are
bounded away from 1/2 and ρ(1) is a non-negative con-
stant. Then, the Type I error probability converges to 0 as
Ω(k−2).

3.2. Asymptotically Uninformative Nodes

In this section, we consider the case where the node decisions
become increasing uninformative; that is, qk → 1/2. Let
Qk = (1 − 2qk)/(1 − qk). Note that qk → 1/2 if and only
if Qk → 0. This parameter measures how “informative” the
corrupted decision is. For example, if qk = 0 (where there
is no flipping), then the decision is maximally informative in
terms of updating the public belief. However if qk = 1/2, in
which case Qk = 0, then the decision is completely uninfor-
mative in terms of updating the public belief.

Theorem 4. Suppose that there exists p > 1 such that Qk =

O
(

1
k(log k)p

)
. Then, the public belief converges to a nonzero

limit almost surely.

It is evident that if the public belief converges to a nonzero
limit almost surely, then P0(dk = 1) is bounded away from
0 and P0(dk = 0) is bounded away from 1. In consequence,

the system does not asymptotically learn the true situation,
and Theorem 4 provides a necessary condition for asymptotic
learning.

Theorem 4 implies that for the public belief to tend to zero
with positive probability, there must exist a p ≤ 1 such that
Qk = Ω(1/k(log k)p)). If the public belief does not converge
to zero, then it is impossible for there to be an eventual collec-
tive arrival at the true hypothesis. To explain this further, letH
denote the event that there exists a (random) k0 such that the
sequence of decisions dk = 0 (true hypothesis) for all k ≥ k0.
Occurrence of this event signifies that after a finite number of
decisions, the agents arrive at the true underlying state. Such
an outcome also means that, eventually, each agent’s private
signal is overpowered by the past collective true verdict, so
that a false decision is never again declared. In the literature
on social learning, this phenomenon is called information cas-
cade (e.g., [25]) or herding (e.g., [19]). We use L to denote
the event {bk → 0}. Notice that H occurs only if L occurs.
Hence,H is a subset of the event that bk → 0; that is,H ⊂ L.
These leads to the following corollary of Theorem 4.

Corollary 1. If Qk = O(1/k(log k)p) for some p > 1, then
P(H) = 0.

4. CONCLUSION

We have studied the sequential hypothesis testing problem in
a feedforward network in which node decisions experience
random flippings after broadcasts. We show that if the mem-
ory sizes are bounded, then there does not exist a decision
strategy such that the error probabilities converge to 0. If each
node learns from all the previous decisions, then with the my-
opic decision strategy, the error probabilities converge to 0,
provided the flipping probabilities are bounded away from
1/2. In the case where the flipping probabilities converge to
1/2, we derive a necessary condition on the convergence rate
of the flipping probabilities such that the error probabilities
converge to 0.

Our analysis leads to several open questions. We wish
to study the case where the memory size goes to infinity but
each node cannot learn from all previous decisions. We also
want to generalize the techniques used in this paper to more
general network topologies. Moreover, besides erasure and
flipping failures, we expect that our techniques can be used
in the additive Gaussian noise scenario. With finite signal-to-
noise ratios (SNR), the martingale convergence proof in The-
orem 2 easily generalizes to this scenario. However, if SNR
goes to 0 (e.g., the fading coefficient goes to 0, the noise vari-
ance goes to infinity, or the broadcasting signal power goes
to 0), it is obvious that the convergence of error probability is
not always true. We want to derive necessary and sufficient
conditions on the convergence rate of SNR such that the error
probability still converges to 0.
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