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ABSTRACT

A distributed fusion problem is addressed where cross-covariance
matrices of estimated variables are unknown. We first try to estimate
the cross-covariances, and then calculate the weighting coefficients
to combine the estimates linearly. We consider two approaches,
one where we do not use priors for the covariance matrices of the
model and another, where we use priors and engage the Bayesian
machinery. For the former, we exploit the maximum-entropy
principle in finding the optimal cross-covariance estimate and for the
latter, we employ Wishart distributions as priors and search for the
maximum a posteriori estimate. Both problems turn out to require
convex optimization which can be solved by existing techniques.
When the cross-covariance estimates are obtained, the weighting
coefficients can easily be calculated so that fusion can take place.
Simulation results that demonstrate the performance of the proposed
methods are provided.

Index Terms— Convex optimization, covariance estimation,
data fusion, distributed estimation, maximum entropy

1. INTRODUCTION

Distributed data fusion problems have been drawing great attention
from many fields, especially in the wireless sensor network
community. The motivation for distributed processing is that it
allows for gains in scalability and robustness, which are features that
cannot be met with traditional centralized architectures. In many
applications, the information propagated through a network is in the
form of the estimated states of interest, along with the covariance
of estimation error. A well-known difficulty in this setup is that
the estimates, based on the observations collected from different
places, have unknown cross-covariances. This is particularly true for
networks with unknown topologies. Many approaches [1, 2, 3, 4]
have been proposed to mitigate this problem. A popular one is
known as the covariance intersection [5] method, which yields
consistent estimates between the fused local estimates.

In this paper, we propose a convex optimization method to solve
the problem. Our strategy is to estimate the cross-covariance first
and then fuse the information from the various sources. We consider
two cases, without and with priors: if we do not have any prior
information about the covariance matrix, we can use the maximum-
entropy (ME) principle [6] as a criterion in the search for the optimal
cross-covariance; if we have priors of the covariance matrices, in
estimating them, we maximize the a posteriori distributions of these
matrices. The problems in both cases can be formulated as convex
optimization problems and therefore, they can readily be solved by
some well-known methods.

This work was supported by NSF under Award CCF-1018323.

The paper is organized as follows. Relation to prior work
and contributions are briefly discussed in Section 2. The problem
is introduced and formulated in Section 3. In Sections 4 and
5, the cases without and with priors are considered, respectively.
The problems in both cases are formulated as convex optimization
problems. We discuss the solutions in Section 6. In Section 7,
numerical results are presented that show the performance of our
methods. Section 8 concludes the paper.

The notation we use in this paper is as follows. Uppercase letters
refer to matrices and lowercase letters to vectors or scalars; |A| is
the determinant of a matrix A; A � B means A − B is a positive
definite matrix; x ∼ p(x) signifies that the random variable x is
distributed according to p(x); tr(A) is the trace of the matrix A; In
is the identity matrix with size n × n; Γ(·) is the standard gamma
function, and Γn(·) is the multivariate gamma function defined as [7]

Γn(l) = πn(n−1)/4
n∏

j=1

Γ

(
l − 1

2
(j − 1)

)
. (1)

With N (µ,C) we denote the multivariate Gaussian distribution of
an n× 1 vector, i.e.,

f(x) =
1

(2π)n/2|C|1/2
exp

(
−1

2
(x− µ)>C−1(x− µ)

)
, (2)

where µ is the mean and C is the covariance matrix. The n ×
n random matrix A is said to have a Wishart distribution if its
probability distribution function (pdf) is given by

p(A) =
|A|

l−n−1
2 exp

(
− 1

2
tr(Σ−1A)

)
2

nl
2 |Σ| l2 Γn( l

2
)

, (3)

in which Σ is a positive definite matrix, l is the degree of freedom
and Γn is defined by (1). We use Wn(l,Σ) to denote the Wishart
distribution.

2. RELATION TO PRIOR WORK

In the literature, there are various studies on the fusion problem
where the cross-covariance matrices are unknown [2, 3, 5, 4]. A
naı̈ve but simple method is to use the weighted average, where the
weighting coefficients are proportional to the degrees of the nodes
(the numbers of neighbors of the nodes) [8]. The approach makes
sense because if the node has a higher degree, it collects more
information and therefore has better estimates. A more complicated
and popular method is known as the covariance intersection method
[5]. It yields consistent estimates between the fused local estimates.
In order to reduce the computational complexity, several suboptimal
non-iterative algorithms for fast covariance intersection have been
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developed [9, 10]. In [11], we proposed to put the cross-covariance
estimation problem into the Bayesian framework and employ the
Monte Carlo method to provide a minimum mean square error
estimate. All of the above approaches do not estimate the cross-
covariance matrices. In this paper, we first aim at applying
a convex optimization method to explicitly estimate the cross-
covariance matrices, and then fuse the information from various
sources accordingly. Our simulation experiments indicate that with
this approach we obtain better performance.

3. PROBLEM FORMULATION

Consider that a node in a network has k − 1 nodes in its
neighborhood. By communication with its neighbors, it has k
available estimates, including its own estimate. Each estimate xi
for i ∈ {1, · · · , k} is a n×1 vector, with the covariance matrices of
the estimation error Pii. We concatenate the k vectors and let

x =
[
x>1 x>2 · · · x>k

]>
, (4)

where x ∈ Rnk×1. We assume that the mean of xi is the
true state x0. Therefore, the covariance matrix of x is also the
covariance matrix of the estimation error of x. We denote with Px

the covariance matrix of x, where

Px =

P11 · · · P1k

...
. . .

...
P>1k · · · Pkk

 . (5)

We start by considering a linear and unbiased estimator in the form

x̂0 = W>x, (6)

where W is the weighting coefficient matrix

W =
[
W1 W2 · · · Wk

]>
, (7)

with Wi ∈ Rn×n. Since the estimator is unbiased, we require

W1 +W2 + · · ·+Wk = I. (8)

Let I(k) be a kn × n matrix concatenated vertically by k identity
matrices with size n× n,

I(k) =
[
In In · · · In

]>
. (9)

Then (8) becomes W>I(k) = I . Let P0 be the covariance matrix of
x̂0, which can be expressed as

P0 = W>E(xx>)W = W>PxW. (10)

The mean square error is just the trace of P0. The minimization of
the mean square error subject to the constraints (8) can be carried out
by using the method of Lagrange multipliers. The solution becomes

W> =
(
I>(k)P

−1
x I(k)

)−1

I>(k)P
−1
x (11)

P0 = W>PxW =
(
I>(k)P

−1
x I(k)

)−1

. (12)

By substituting (11) into (6), we have

x̂0 =
(
I>(k)P

−1
x I(k)

)−1

I>(k)P
−1
x x. (13)

This estimate is optimal in the sense of being unbiased and with
minimum mean square error. In many situations, however, we do not
have information about Pij for i 6= j, as is the case in the distributed
Kalman filtering problem [8]. Therefore, we are unable to obtain W
or fuse the information.

Now suppose that the true state x0 is a random vector with zero
mean and covariance C0, and that xi is the estimate of x0 corrupted
by a zero mean noise with covariance Ci, for i ∈ {1, · · · , k}.
Also, we assume that the noises are independent of each other and
independent of x0. The covariance matrix of x, Px, which is defined
in (5), becomes

Px =


C1 + C0 C0 · · · C0

C0 C2 + C0 · · · C0

...
...

. . .
...

C0 C0 · · · Ck + C0

 . (14)

In the fusion problem, we know the diagonal blocks of the
covariance matrix, i.e., Pii. Note Pii = Ci + C0. But we do not
know Ci or C0. We wish to have an estimate of C0 so that we can
determine the weighting coefficients to combine those xis.

There are some previous works on this problem. In [5],
the authors have proposed the covariance intersection method
to minimize the upper bound for all possible Pij by a convex
combination of the covariances, i.e., by using

P−1
0 =

k∑
j=1

ωjP
−1
jj (15)

P−1
0 x̂0 =

k∑
j=1

ωjP
−1
jj xj , (16)

where the weighting coefficients satisfy ωj ∈ [0, 1] and
∑k

j=1 ωj =
1. The minimization of the trace requires iterative minimization
of the given nonlinear cost function with respect to the weight
coefficient ω. In order to reduce the computational complexity,
several suboptimal non-iterative algorithms for fast covariance
intersection have been developed [9, 10]. One of them sets the ωj
according to [9]

ωj =
1/tr(Pjj)∑k
i=1 1/tr(Pii)

. (17)

In the sequel, we will use this method for comparison with our
algorithms.

4. THE MAXIMUM ENTROPY APPROACH

In this section, for the sake of simplicity we make an additional
assumption that the model is Gaussian, and we assume x0 ∼
N (0, C0) and xi|x0 ∼ N (x0, Ci). Here we do not have the
information about the priors of C0 and Ci, and we propose to
exploit the ME principle. The rationale for using the ME principle
is discussed thoroughly in [6, 12].

The entropy is basically a functional, i.e., it maps a function f
to a real number. It is defined as

H(f) = −
∫
f(y) log f(y)dy. (18)
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Plugging (2) in (18), we obtain the entropy of the multivariate
Gaussian distribution,

H(f) =−
∫
y∈Rk

f(y)

(
− log((2π)k/2|C|1/2)− 1

2
y>C−1y

)
dy

(19)

= log((2π)k/2|C|1/2) +

∫
y∈Rk

1

2
f(y)y>C−1ydy. (20)

Let

y = [y1, · · · , yn]> (21)

D = C−1 =

c11 · · · c1n
...

. . .
...

c1n · · · cnn


−1

=

d11 · · · d1n
...

. . .
...

d1n · · · dnn

 . (22)

We have

y>C−1y =

n∑
i=1

n∑
j=1

dijyiyj . (23)

Therefore the second term in (20) becomes∫
y∈Rk

f(y)y>C−1ydy (24)

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(y)

n∑
i=1

n∑
j=1

dijyiyj dy1 · · ·dyn (25)

=

n∑
i=1

n∑
j=1

dijcij = tr(DC) = n. (26)

Thus the maximization of H(f) reduces to the maximization of
log(|C|).

In order to estimate the cross-covariance, we try to maximize the
entropy of the joint distribution of x0 and xi. Specifically, we try to
maximize H(px0,x1,··· ,xk ). We have

H(px0,x1,··· ,xk ) =H(px0) +

k∑
i=1

H(pxi|x0
) (27)

∝ log(|C0|) +

k∑
i=1

log(|Ci|) (28)

= log(|C0|) +

k∑
i=1

log(|Pii − C0|), (29)

where the first equality can be found in [13]. Therefore, the entire
optimization problem can be formulated as

maximize log(|C0|) +

k∑
i=1

log(|Pii − C0|) (30)

subject to Pii − C0 � 0 i ∈ {1, · · · , k} (31)
C0 � 0, (32)

where the variable is the symmetric matrix C0. The objective
function (30) is a convex function on the positive semidefinite cone
[14]; the constraints (31) and (32) are convex sets. Thus the
optimization problem can be easily solved by some existing well-
known methods, e.g., the interior point method [15].

Before ending this section, we wish to emphasize that the model
does not have to be normal. In fact, it can be unknown as long as the
first and the second moments are specified. Recall that the normal
distribution has ME among all real-valued distributions with given
mean and variance [16]. That is to say, even if the model is unknown,
we still obtain the same solution if we employ the ME criterion.

5. THE BAYESIAN APPROACH

In this section, we consider the case where the priors of the unknown
covariance matrices are available. We use the Wishart distribution as
the prior since it is common for positive definite matrices. Suppose
the priors of C0 and Ci are p0(C0) = Wn(l0,Σ0) and pi(Ci) =
Wn(li,Σi), respectively. We use the maximum a posteriori (MAP)
distribution as a criterion, and the optimal estimator can be written
as

C0 = max arg
C�0

p0(C)

k∏
i=1

pi(Pii − C). (33)

If we substitute (3) into (33), we have

C0 =max arg
C�0

g(C), (34)

where g(C) is defined as

g(C) =
l0 − n− 1

2
log |C| − 1

2
tr(Σ−1

0 C)

+

k∑
i=1

li − n− 1

2
log |Pii − C|

−
k∑

i=1

1

2
tr(Σ−1

i (Pii − C)). (35)

The optimization problem can be cast as

maximize g(C) (36)
subject to Pii − C � 0 i ∈ {1, · · · , k} (37)

C � 0, (38)

where the optimization variable is the symmetric matrix C. We
know log | · | is a concave function and tr(·) is a convex function over
the positive semidefinite cone [14]. Therefore g(C) is a concave
function with respect to C. Since the constraint also specifies a
convex set, the problem is a convex optimization problem as well,
which can be solved with no difficulty.

6. DISCUSSION

We point out that (30) and (35) are both with the same log(|·|) terms.
In fact, (30) is a special case of (35), where the hyperparameters Σis
are infinitely large and make the terms tr(Σ−1

0 C) and tr(Σ−1
i (Pii −

C)) vanish for finite Pii and C. To illustrate the connections
between the ME and the Bayesian approaches further, we first
associate an ellipsoid to each covariance matrix. The ellipsoid of
A is defined as

{x ∈ Rn|x>A−1x = 1}. (39)

For n = 2, the ellipsoid becomes an ellipse. Basically the major
and minor axes of the ellipse show how large the variances are in
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Fig. 1. Illustration of the ellipses defined by P11, P22 and the
estimated cross-covariances by different methods.

the directions of the axes. The angle between the x-axis and the
major axis of the ellipse indicates how much the data from the two
dimensions correlate with each other. Figure 1 shows the ellipses
of P11, P22 and the estimated cross-covariances. We set k = 2 for
simplicity and let

P11 =

[
1 −0.5
−0.5 3

]
, P22 =

[
3 0
0 1

]
. (40)

The priors are C0 ∼ W2(4, σ2
0I2), Ci ∼ W2(4, σ2I2). The ellipses

for different matrices are shown in Fig. 1. We can see that the
ellipses of C0 are inside those of C1 and C2, which makes sense
since any point in the feasible set shall make its associated ellipse
in the intersection of those of the Piis. Also, for larger σ2

0/σ
2

the solution ellipse becomes larger; for smaller σ2
0/σ

2, the ellipse
becomes smaller. When both σ2

0 and σ2 are large, in this case
σ2
0 = σ2 = 10, the ellipse (green) is very close to the ME solution

(red).
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Fig. 2. Performance comparison of fusion for two nodes under
different values of σ2.
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Fig. 3. Performance comparison of fusion for three nodes under
different values of σ2.

7. SIMULATION RESULTS

We use the Gaussian model in the numerical experiment. Suppose
that the variable to be estimated is x0 and that it has distribution
N (µ0, C0). We let µ0 = 0 for the sake of simplicity. The estimates
xi have the conditional distributionsN (x0, Ci) for i ∈ {1, · · · , k}.
The noise of the measurements is assumed to be independent of each
other. We can consider xi to be measurements as well as estimates,
since we shall let x̂i = xi if we make estimation only based on
xi. If we concatenate k estimates into one vector x as before, the
distribution of the vector conditioned on x0 is

x|x0 ∼ N


x0...
x0

 ,
C1 · · · O

...
. . .

...
O · · · Ck


 . (41)

The marginal distribution of x becomes p(x) = N (x|0, Px), where
Px is defined in (14). The diagonal blocks Ci + C0 are known
exactly. On the other hand, neither C0 nor Ci is known. To generate
the data for our numerical experiment, we let x0 be two-dimensional.
First, we drew C0 from its prior, assumed to beW2(2,Λ1) and C1,
· · · , Ck fromW2(2, σ2Λ2) independently, where

Λ1 =

[
4 −1
−1 3

]
, and Λ2 =

[
1 0.5

0.5 2

]
. (42)

Then we generated x0 by sampling from N (0, C0). Similarly, we
generated the measurements xi from N (x0, Ci). We set k = 2, 3.
Then we had all the data we needed for testing and comparing
the estimators. For comparison, we used two other estimators, the
optimal estimator (13) with all the information (including C0), and
the fast covariance intersection method (17) from [9]. For each
configuration, we ran 2000 tests. In the legend, we use optimal,
ME, MAP, and CI to indicate the optimal method, the proposed ME
method, the proposed MAP method (with the prior available), and
the fast covariance intersection method, respectively.

Figures 2 and 3 show the mean square error performance for k =
2 and k = 3, respectively. We can see that the proposed methods
are better than the CI method in both situations. Meanwhile, as the
hyperparameters Σ0 and Σi are much different, the MAP estimator
outperforms the ME estimator thanks to its priors.

8. CONCLUSION

In this article, we propose to use the convex optimization
techniques to solve the fusion of correlated estimates with unknown
correlations. Specifically, given the diagonal block of the error
covariance matrix, we cast the problem of estimating cross-
covariance as a convex optimization problem which can readily be
solved by well-known methods. Two cases are considered: for the
non-Bayesian case, we employ the maximum entropy criterion in
the search for optimal cross-covariance; for the Bayesian case, we
assume that the priors of the unknown covariance matrices follow a
Wishart distribution. We then maximize the posterior probability
of the cross-covariances. As soon as the cross-covariances are
obtained, the weighting coefficients can be determined and the
distributed estimates can be combined by a simple calculation.
We demonstrated the performance of our methods with numerical
experiments.
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