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ABSTRACT

Bounded confidence opinion dynamic models have received much
recent interest as models of information propagation in social net-
works and localized distributed averaging. However in the existing
literature, opinions are only viewed as abstract quantities rather than
as part of a decision-making system. In this work, opinion dynamics
are examined when agents are Bayesian decision makers that per-
form hypothesis testing or signal detection. Bounded confidence is
defined on prior probabilities of hypotheses through Bayes risk er-
ror divergence, the appropriate measure between priors in hypothe-
sis testing. This definition contrasts with the measure used between
opinions in the standard model: absolute error. It is shown that the
rapid convergence of prior probabilities to a small number of limit-
ing values is similar to that seen in the standard model. The most
interesting finding in this work is that the number of these limiting
values changes with the signal-to-noise ratio in the hypothesis test-
ing task. The number of final values or clusters is maximal at inter-
mediate signal-to-noise ratios, suggesting that the most contentious
issues lead to the largest number of factions.

Index Terms— Bayesian decision making, Bregman diver-
gence, Krause model, opinion dynamics, signal detection, social
network

1. INTRODUCTION

People are often asked for their opinion. Will Man of Steel be
a blockbuster or a flop? Who will win the presidential election?
Will Oracle Database or IBM DB2 have more sales next year? Are
bomber jackets going to be popular this spring?

In all of these questions, one of the hypotheses is true and the
other one is false after the fact (assuming consistent definitions of
blockbuster, flop, win, and popular). The job of the opinion giver is
to try to report the true hypothesis as his or her opinion. Thus, such
opinion questions can be framed as Bayesian binary hypothesis test-
ing or signal detection problems because human decision makers are
tasked with predicting the true hypothesis based on noisy observa-
tions of the world and their prior belief with minimal probability of
error or Bayes risk [1]. Under such a model, an opinion is composed
of both an observation and a prior.

The observation component of opinion can have varying levels
of noise. For some opinions, observable features are very predictive
of the hypothesis whereas in others, the observable features are not
very predictive at all. In society, the prior beliefs of decision mak-
ers are mutable and influenced by their network of acquaintances.
People sway others one way or the other. However, most people can
only be swayed a little bit at a time; they are not influenced by people
with a very different prior. This non-influence of people with beliefs
too far away is known as bounded confidence [2].

One may ask why signal detection questions rather than more di-
rect consumer choice questions such as whether the decision maker
will personally buy a bomber jacket or who the decision maker will
vote for are of interest. One reason is that it has been empirically
shown that aggregating answers from the former type of question
(expectation question) yields more accurate forecasts than the latter
type of question (intention question) [3]. Also, the former type of
question is more in line with the popular definition of opinion.

Opinion dynamics—how opinions evolve among the people in a
social network over time—has been studied in a variety of literatures
recently [4]. Two discrete-time models of note that incorporate the
idea of bounded confidence are the Krause model and the Deffuant-
Weisbuch model [2, 5, 6]. The Krause model in particular begins
with an initial assignment of opinions for each person; for all people
in the society, it works by finding all others whose opinion is within
a certain absolute value of ones own and updating the own opinion
to be the mean of those opinions. The model has been analyzed to
show that opinions converge in finite time, usually quickly, to a few
values [7], resulting in clusters of people with the same final opinion.

The existing literature on bounded confidence opinion dynam-
ics only considers opinions as abstract real-valued numbers without
connection to a decision-making formulation. In this work, it is pro-
posed that opinion-giving be treated as a Bayesian signal detection
task and that bounded confidence dynamics be applied to the deci-
sion makers’ prior probabilities. Such a view of opinion dynamics
through a decision-theoretic lens seems not to exist in the literature.

When one is to quantify dissimilarity in prior probabilities of
Bayesian hypothesis testing, absolute error is not appropriate be-
cause it treats all prior probabilities the same. The difference be-
tween a prior probability of 0.1 and 0.2 leads to a Bayes risk differ-
ence that may be profoundly different than the Bayes risk difference
between a prior probability of 0.4 and 0.5, which is also different
when there are different observation models and signal-to-noise ra-
tios. Bayes risk error divergence, a member of the family of Breg-
man divergences, is a criterion by which the dissimilarity of two
input prior probabilities is examined appropriately according to de-
tection performance [8, 9]. Thus, in this work, it is proposed that
Bayes risk error be used to define bounded confidence.

Under bounded confidence defined in the sense of Bayes risk
error divergence, it is shown in this paper that prior probabilities
converge in finite time and quickly to a few limiting values in the
same way that opinions converge in the standard Krause model with
bounded confidence defined by absolute error. Much more interest-
ingly, by defining opinion dynamics in the decision-making setting,
it is possible to explore the effect of measurement noise on the con-
vergence. It is found that the largest number of converged clusters
occurs for an intermediate signal-to-noise ratio whereas convergence
is to only one value for very low and very high signal-to-noise ratios.
An intermediate signal-to-noise ratio corresponds to an issue that is
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quite contentious. Thus, this novel finding in this paper relays the
interpretation that more contentious issues lead to more factions.

The remainder of the paper is organized as follows. First, some
background material is covered on the Bayes risk error divergence in
Section 2 and on the Krause model of bounded confidence opinion
dynamics in Section 3. Then in Section 4, the new model for opin-
ions when viewed as prior probabilities for decision-making tasks is
proposed by considering bounded confidence in the Bayes risk er-
ror divergence sense. Section 5 proves convergence of the decision
weights of decision makers in finite time to clusters. Empirical re-
sults are given in Section 6 that show the dynamics of the proposed
model, including the varying number of clusters as a function of
signal-to-noise ratio in the Bayesian hypothesis testing task. Sec-
tion 7 discusses and contextualizes the results and offers directions
for future work.

2. BAYESIAN HYPOTHESIS TESTING AND
BAYES RISK ERROR

Let us consider the standard Bayesian approach to signal detection or
hypothesis testing, focusing on the binary hypothesis case [1]. There
is a binary hypothesis H ∈ {h0, h1} with prior probabilities p0 and
p1, both non-negative such that p0+p1 = 1. The opinion giver or de-
cision maker does not observe the hypothesis directly, but observes
a noisy measurement Y that is related to the hypothesis through the
likelihood functions fY |H(y|H = h0) and fY |H(y|H = h1). The
decision maker observes y and tries to determine whether the true
hypothesis is h0 or h1 using the decision rule ĥ(y).

The decision maker has error costs c10 and c01, the costs of de-
ciding h1 when the true hypothesis is h0 (a Type I error) and decid-
ing h0 when the true hypothesis is h1 (a Type II error). The decision
rule that is considered is the following likelihood ratio test:

fY |H(y|H = h1)

fY |H(y|H = h0)

ĥ(y)=h1

R
ĥ(y)=h0

ac10
(1− a)c01

, (1)

where if the decision weight a ∈ [0, 1] equals p0, the decision rule
is Bayes optimal. The resulting type I error probability of the deci-
sion rule, denoted pI

E , is a function of the decision weight a in the
threshold of the likelihood ratio test, i.e. pI

E(a). This is similarly the
case for the type II error probability pII

E(a). The overall detection
error probability weighted by the costs and the true priors, known as
the Bayes risk, is:

J(p0, a) = c10p0p
I
E(a) + c01(1− p0)p

II
E(a). (2)

The difference between the Bayes risk of the likelihood ratio test
with decision weight a = p0 and the Bayes risk of the likelihood
ratio test with any general decision weight a is defined to be the
Bayes risk error divergence [8, 9]:

d(p0, a) = J(p0, a)− J(p0, p0). (3)

The Bayes risk error divergence is the appropriate measure of prox-
imity between prior probabilities of hypotheses because it is directly
related to decision-making performance.

3. KRAUSE MODEL OF BOUNDED CONFIDENCE
OPINION DYNAMICS

Let us also consider a now standard approach to modeling opinion
dynamics: the Krause model [2, 5]. We have a society of opinion

givers i = 1, . . . , n, each with an opinion at time k of ai(k) ∈ R.
Each opinion giver has a neighborhood of other opinion givers in
the society whose opinion does not differ by more than an opinion
threshold τ :

Ni(k) = {j ∈ {1, . . . , n} | |ai(k)− aj(k)| ≤ τ}. (4)

The neighborhood defined by the threshold τ is the model for
bounded confidence.

Each opinion giver begins with an initial opinion. The opinions
are updated based on interaction and influence from neighbors. The
opinion giver’s opinion is updated at the next time step to the mean
or centroid of the neighborhood at the current time step:

ai(k + 1) =
1

|Ni(k)|
∑

j∈Ni(k)

aj(k). (5)

It has been shown that these dynamics converge in a finite number of
steps to a few clusters with all opinion givers in each cluster sharing
the same opinion value [7].

4. BAYES RISK ERROR BOUNDED CONFIDENCE

We now propose a bounded confidence opinion dynamics model
for Bayesian decision makers by endowing opinion-giving with a
decision-making, specifically detection, task. We do so by combin-
ing the ideas discussed in Section 2 and Section 3, specifically by
having opinion givers observe a noisy measurement Y and use the
likelihood ratio test decision rule (1), and have their personal prior
beliefs evolve according to Krause dynamics.

The key difference in the dynamics from the standard Krause
model is in the quantification of proximity for bounded confidence.
When opinions have a semantic meaning as prior probabilities in a
detection task, absolute error as in (4) is not how similarity between
opinions should be measured. As discussed earlier, the divergence
between prior probabilities that takes detection performance into ac-
count is the Bayes risk error. Thus, we take the bounded confidence
neighborhood to be defined by Bayes risk error divergence:

Ni(k) = {j ∈ {1, . . . , n} | d(ai(k), aj(k)) ≤ τ}. (6)

It should be noted that due to the likelihood functions in the decision
rule and consequently Bayes risk, the Bayes risk error divergence
changes with different amounts of observation noise.

The second part of the Krause dynamics is the opinion update to
the centroid of the neighborhood. The Bayes risk error divergence
centroid of a set of prior probabilities is simply the mean value due
to a property of the family of Bregman divergences [10], of which
the Bayes risk error divergence is a member. Therefore, the opinion
update (5) remains unchanged from the standard Krause model when
Bayes risk error is considered.

5. CONVERGENCE RESULTS

In this section, we present basic convergence properties of the opin-
ion dynamics system with bounded confidence defined in the Bayes
risk error sense. The first proposition states that the initial ordering
of the decision weights is preserved throughout the dynamic evolu-
tion. The second proposition states that the dynamics of the deci-
sion weights converges in finite time to a few clusters. The proposi-
tions and proof techniques are very similar to those for the standard
Krause model presented in [7]. Due to space constraints, we omit
the full proof of the second proposition.
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Proposition 1. Let {a1(k), . . . , an(k)} evolve according to the dy-
namics (6), (5). If ai(0) ≤ aj(0), then ai(k) ≤ aj(k) for all k.

Proof. The proof is by induction. The base case is in the theorem
statement: ai(0) ≤ aj(0). We assume that ai(κ) ≤ aj(κ) and show
that ai(κ+ 1) ≤ aj(κ+ 1) must then also be true.

Let

Si(κ) = Ni(κ) \Nj(κ),

Sj(κ) = Nj(κ) \Ni(κ),

Sij(κ) = Ni(κ) ∩Nj(κ),

and also let

āSi(κ) =
1

|Si(κ)|
∑

ℓ∈Si(κ)

aℓ(κ),

āSj (κ) =
1

|Sj(κ)|
∑

ℓ∈Sj(κ)

aℓ(κ),

āSij (κ) =
1

|Sij(κ)|
∑

ℓ∈Sij(κ)

aℓ(κ).

Since Bayes risk error is a Bregman divergence, although not
symmetric and not convex in the second argument like absolute error,
it is monotonically non-decreasing in the second argument. This
monotonicity leads to the conclusion with neighborhoods defined by
Bayes risk error divergence that for any ℓ1 ∈ Si(κ), ℓ2 ∈ Sij(κ),
and ℓ3 ∈ Sj(κ), aℓ1(κ) ≤ aℓ2(κ) ≤ aℓ3(κ). Therefore, it is also
true that āSi(κ) ≤ āSij (κ) ≤ āSj (κ).

Carrying out the update (5), we find that

ai(κ+ 1) =
|Si(κ)|āSi(κ) + |Sij(κ)|āSij (κ)

|Ni(κ)|
≤ āSij (κ),

aj(κ+ 1) =
|Sj(κ)|āSj (κ) + |Sij(κ)|āSij (κ)

|Nj(κ)|
≥ āSij (κ),

so ai(κ+ 1) ≤ aj(κ+ 1).

Proposition 2. Let {a1(k), . . . , an(k)} evolve according to the
dynamics (6), (5). For all i, ai(k) converges to a limit a∗

i in fi-
nite time. Additionally, for any pair i and j, either a∗

i = a∗
j or

max{d(a∗
i , a

∗
j ), d(a

∗
j , a

∗
i )} ≥ τ .

Proof. The proof follows from Proposition 1 and the bounded se-
quence convergence argument for proving [7, Theorem 1], with dis-
tance replaced by the maximum of the divergences with both order-
ings of input arguments.

6. EMPIRICAL RESULTS

In this section, we present examples to illustrate opinion dynamics
with bounded confidence in the Bayes risk error divergence sense.
We consider a set of n = 100 opinion givers with initial prior prob-
abilities that are samples from a uniform distribution over the in-
terval [0, 1]. The signal detection task is composed of hypotheses
and noise such that conditioned on hypothesis h0, y is drawn from a
scalar Gaussian distribution with mean 0 and standard deviation σ.
Conditioned on hypothesis h1, y is also Gaussian with standard de-
viation σ, but with mean 1. All opinion givers have observations of
the same quality; thus these likelihood functions are the same for all
100 opinion givers. All opinion givers also have the same costs c10
and c01 which are equal. The opinion threshold is fixed at τ = 0.1.
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Fig. 1. Dynamics of 100 people with bounded confidence threshold
0.1 for (a) standard Krause model and (b) Bayes risk error divergence
Krause model with univariate Gaussian observations having means
0 and 1, and standard deviation 4.

As a point of comparison, we also show opinion dynamics under the
standard Krause model.

Fig. 1(a) shows the standard Krause opinion dynamics. Fig. 1(b)
shows the dynamics with neighborhoods defined by Bayes risk error
as proposed in this paper with a particular value for the observa-
tion noise standard deviation σ = 4. The convergence behavior un-
der Bayes risk error bounded confidence and standard absolute error
bounded confidence is qualitatively similar. Both converge quickly
to a few clusters while maintaining the initial ordering. Under Bayes
risk error, the convergence is faster and the middle cluster contains
fewer people. Most people end up on one side of the fence or the
other rather than straddling it.

Since (unlike absolute error) the Bayes risk error divergence de-
pends on the likelihood functions of the observation model, bounded
confidence opinion dynamics can be investigated under different
signal-to-noise ratios. For smaller and greater noise levels, as seen
in Fig. 2, the convergence pattern as well as the number of final
clusters is different than an intermediate amount of noise.

The number of converged clusters (averaged across several trials
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Fig. 2. Dynamics of 100 people with bounded confidence thresh-
old 0.1 for Bayes risk error divergence Krause model with univariate
Gaussian observations having means 0 and 1, and (a) standard devi-
ation 1 and (b) standard deviation 16.

of initial decision maker prior probabilities) as a function of noise
level for a fixed bounded confidence threshold is shown in Fig. 3.
The number of clusters first increases and then decreases with the
noise level. When observations are either very certain or very un-
certain, there is convergence to a single cluster; however, in the in-
termediate case there are more clusters. Such a phenomenon with
the number of converged clusters in bounded confidence opinion dy-
namics does not appear in any previous work.

7. DISCUSSION AND CONCLUSION

In this paper, we have examined bounded confidence opinion dy-
namics when the opinions are endowed with a meaning as decisions
in a hypothesis testing or signal detection task. The model that arises
in this setting is very similar to the standard Krause model of opinion
dynamics, but with the key difference that the confidence bound is
calcuated via Bayes risk error divergence rather than absolute error.
The convergence results and behaviors in this setting follow those
of the Krause model. By being endowed with the decision-making
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Fig. 3. Converged number of clusters of 100 people with bounded
confidence threshold 0.1, averaged over 200 trials, for Bayes risk er-
ror divergence Krause model with univariate Gaussian observations
having means 0 and 1, and standard deviation as plotted. The error
bars indicate the standard deviation of the number of clusters over
the trials. The converged number of clusters is one in all trials for
small noise standard deviation.

context, we are able to examine the behavior of the opinion dynam-
ics as a function of observation noise. In doing so, we find that the
number of converged clusters first increases and then decreases with
signal-to-noise ratio.

The interpretation is that at very low noise, the observation read-
ily indicates the true hypothesis so priors do not matter, and thus
everyone converges to an average, maximally ignorant prior. The in-
termediate noise regime corresponds to the most contentious issues
and opinions because the observation is somewhat informative of the
true hypothesis, but not fully. The choice of prior has a large effect
on the opinion, and thus these contentious issues lead to factions.
With very large amounts of noise, no one has any idea what is going
on, and everyone is uninformed; again, convergence is to an aver-
age, uninformed consensus of priors. Although such a phenomenon
is known to occur in society, to the best of the author’s knowledge,
there has been no previously proposed opinion dynamics model that
generates more factions when the issue is more contentious.

The theoretical convergence analysis presented herein, and also
in the literature for the standard Krause model has not been able to
precisely characterize the number of converged clusters, which is
central to the main insight of this paper; theoretical analysis of that
characterization is of great importance. Other directions for further
research include examining a more realistic version of the model
in which only other people with whom a social connection exists
are included in the opinion update mean [11], including stubborn
agents [12], considering agents with differing Bayes costs [13], and
studying vector-valued opinions or prior probabilities [14] arising
when voting on several semantically-related issues [15], which are
readily handled with Bayes risk error divergence [8].
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