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ABSTRACT

In some modeling scenarios, particularly those representing
data from natural sources, the discrete states conventionally
used in hidden Markov models (HMMs) are at best an ap-
proximation, since the discrete states are a modeling arti-
fact. In this paper we present an HMM in which the states
take any value in a simplex. The Dirichlet distribution is
used to provide a parsimonious representation of the distri-
bution of the states. Conditional state estimates using an ex-
tension of the conventional forward/backward method, us-
ing Dirichlet distributions to provide a nearly closed-form,
but approximate, representation.

1. INTRODUCTION

A conventional hidden Markov model (HMM) is a model in
which a sequence of latent (unobserved) state variables x =
(x1, x2, . . . , xT ) form a Markov chain and each element
yt in a sequence of observations YT = (y1, y2, . . . , yT ) is
drawn independently of other observations conditional on
xt [1]. State values can be represented as unit S-vectors,
with the state xt being drawn from the set as

xt ∈
{

[ 1 0 ··· 0 ]T , [ 0 1 ··· 0 ] , [ 0 0 ··· 1 ]T
}

. (1)

HMMs provide statistical inference procedures in areas such
as speech recognition [2], bioinformatics [3], digital com-
munications [4], gesture recognition [5], handwriting recog-
nition [6], human motion recognition [7], etc. In many of
these applications, particularly statistical modeling of hu-
man or natural activities, states represent a decomposition
of the pattern of interest into temporal or spatial compo-
nents, such as when a phone (speech sound) is represented
as having a beginning, middle, and end state. In many such
applications, there is a gradual transition between compo-
nents, so that a “crisp” decomposition into states is a mod-
eling artifact not necessarily present in the physical system
being modeled. The greater variability this introduces into
the conditional observation distributions has been accom-
modated, for example, by employing mixture distributions,
or by increasing the number of states so that states exist to
represent the transitional aspects of the system.

In this paper, the concept of the state of the HMM is
generalized so that a state may be any point in the sim-
plex ∆S = {x ∈ R

S : xi ≥ 0,
∑S

i=1 xi = 1}. The
vertices of this simplex are the unit vectors indicated in (1)
and this generalization of the HMM subsumes the conven-
tional HMM. States are now described not by a pmf, but
by a pdf f(xt). The distribution f(xt) is represented here
using a Dirichlet distribution with parameter vector λt, so
that xt ∼ D(xt;λt). State transitions are described by a
conditional pdf f(xt+1|xt), assumed to be a Dirichlet dis-
tribution xt+1|xt ∼ D(xt+1; lt+1(xt)). The conditional
distribution of the output f(yt|xt) is represented as a super-
position (mixture) of pure distributions, with the elements
of the conditioning state vector as the mixture weights. Be-
cause the state can exist over the continuum of the simplex,
the model is referred to as the continuum-HMM, or cHMM.
Since the mixture parameters effectively change depending
on the state, the cHMM provides for a time-varying, data-
dependent mixture.

In section 3, a Kalman filter-like algorithm is devel-
oped for estimating the posterior distribution of the state
xt, given observations up to time t. The algorithms for
state estimation are formulated on a basis of effectiveness
and expediency, sacrificing some accuracy for closed-form
representations of the distributions. An approximation to
the propagate step has a closed form solution as a Dirichlet
distribution, f(xt+1|Yt) ∼ D(xt+1|λt+t|t). The distribu-
tion of the update step also has a Dirichlet approximation,
f(xt+1|Yt+1) ∼ D(xt+1|λt+1|t+1). The Kullback-Leibler
(KL) divergence between the true filtered distribution and
the Dirichlet approximation is very small.

Since its inception [8] and popularization [1], the HMM
has been applied and extended in a variety of ways. In [9],
it is recognized that using a finite discrete variable is “un-
reasonable for most real-world problems.” To address this
problem, the HMM in [9] is formulated with a countably in-
finite number of states. However, since the number of states
is countable, this differs from our formulation, in which the
states exist in the continuum of the simplex. Furthermore,
state inference in [9] is by means of Gibbs sampling, which
differs significantly from the nearly closed-form solutions
presented here. A different generalization is presented in
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[10], an HMM is built upon a hierarchical Dirichlet process
(HDP). This HMM also has a countably infinite number of
states, but is described by only three parameters. As for the
first infinite state HMM, inference is still done by means
of Gibbs sampling. This model was extended in [11], state
persistence modeling was added to the HMM of [10], but
differences still remain between this and our cHMM model.

2. CONTINUUM STATE HIDDEN MARKOV
MODELS

The state xt may any value in the simplex ∆S . A state xt

equal to one of the vertices of ∆S is called a pure state. The
distribution of the state xt is described using a pdf, which
we have chosen to represent as a Dirichlet distribution. A
Dirichlet distribution overS variablesx = (x1, x2, . . . , xS),
satisfying the constraints

∑S

i=1 xi = 1 and xi ≥ 0, is pa-
rameterized by a vector λ = (λ1, λ2, . . . , λS), with λ ∈
R

S
+, that is, each λi ≥ 0. The Dirichlet density has the form

f(x;λ) = f(x1, x2, . . . , xS ;λ1, λ2, . . . , λS)

=
Γ(

∑S
i=1 λi)

∏S

i=1 Γ(λi)

S
∏

i=1

xλi−1
i ,

which is denoted as x ∼ D(x;λ). Where the functional
form without the constant is of interest, we will write f(x;λ) =
C
∏S

i=1 x
λi−1
i . where, C = Γ(

∑

i λi)/
∏

i Γ(λi) is a nor-
malizing constant.

We take the conditional distribution of the next state
variable as Dirichlet with parameter lt+1(xt): f(xt+1|xt) ∼
D(xt+1; lt+1(xt)). The parameter vector is lt+1(xt), indi-
cating that the Dirichlet parameter vector is (in general) a
time-varying function of the conditioning state xt. The ith
element of lt+1(xt) is denoted as lt+1,i(xt).

If the state xt is a pure state, such as xt = (1, 0, 0), then
the generalized MM behaves on average like a conventional
HMM.

In general, the Dirichlet parameter vector lt+1(xt) could
be any function mapping ∆S → R

S
+. However, for reasons

of convenience and parsimony, we use a linear function,
writing lt+1(xt) =

∑S

j=1 lt+1(j)xt,j . The vector lt+1(j)
indicates the parameter of the distribution of the next state
when all of the mass of state xt is concentrated on state j.
Writing the vectors lt+1(j) as column vectors and stack-
ing these as a matrix (the state transition matrix) Lt+1 =
[

lt+1(1) lt+1(2) · · · lt+1(S)
]

, the parameter for the
next state conditional distribution is lt+1(xt) = Lt+1xt.
With this model, the state transition probability density is
f(xt+1|xt) ∼ D(xt+1|Lt+1xt), or more explicitly,

f(xt+1|xt) = C

S
∏

i=1

x
∑S−1

j=0
xt,j lt+1,i(j)−1

t+1,i

The initial state is selected according to a Dirichlet dis-
tribution with parameter λ1 = Π, that is, x1 ∼ D(x1; Π).

A conventional HMM associates with each pure state a
distribution governing observations produced in that state.
Let yt ∈ R

d denote the observation at time t. If the pure
state is i, the distribution of yt is denoted by f(yt|i), called
the state-constituent distribution. For a state xt ∈ ∆S , the
observation yt has distribution f(yt|xt). For reasons of con-
venience and parsimony, we represent f(yt|xt) as a mix-
ture model, in which distributions associated with each pure
state are mixed using the state as mixture coefficients,

f(yt|xt) =

S
∑

i=1

xt,if(yt|i). (2)

Each of the state-constituent distributions f(yt|i) may take
any of the conventional forms for observation densities for
HMMs (e.g., Gaussian, mixture model, etc.). The observa-
tion model for the generalized state thus subsumes conven-
tional HMMs.

3. STATE ESTIMATION

In this section we develop a method for estimating the dis-
tribution of the state of the cHMM from a sequence of ob-
servations. The estimator here is a forward-only, Kalman
filter-like estimator which provides an estimate of the dis-
tribution f(xt|Yt) of the state xt given a sequence of ob-
servations Yt = (y0,y1, . . . ,yt). A recursive update is
provided so that f(xt+1|Yt+1) can be efficiently computed
from f(xt|Yt). The techniques developed here can be ex-
tended re-create the forward backward α/β computations
familiar from conventional HMM theory.

The distribution f(xt|Yt) is assumed to be Dirichlet
distributed, f(xt|Yt) ∼ D(xt;λt|t), with parameter vec-
tor λt|t, and at the next time step, the distribution is found
to be approximated as f(xt+1|Yt+1) ∼ D(xt+1;λt+1|t+1).
As is conventional, the development proceeds in two steps,
a propagation step and an update step.

The Propagation Step The propagation step computes
the distribution of the state at the next time xt+1, given all
the observations up to time t, according to f(xt+1|Yt) =
∫

∆S
f(xt+1|xt)f(xt|Yt) dxt. The update can be represented

approximately as a Dirichlet distribution, so that efficient
recursive computations are possible. Substituting the defi-
nitions for the distributions in, we obtain

f(xt+1|Yt) =

= C1C2
1

∏

i xt+1,i

∫

∆S

S
∏

i=1

x
λt|t,i−1

t,i

(

S
∏

j=1

x
lt+1,j(i)
t+1,j

)xt,i

dxt.

(3)

The integral can be written more abstractly as
∫

∆S

∏S
i=1 hi(xt,i) dxt,

where hi(xt,i) = x
λt|t,i−1

t,i

(
∏S

j=1 x
lt+1,j(i)
t+1,j

)xt,i . Suppress-

ing the time dependence, write this as hi(xi) = xλi−1
i e−aixiu(xi),

where u(x) is the unit step function (to make this explicitly
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causal) and where bi =
∏S

j=1 x
lt+1,j(i)
t+1,j , and where ai =

− ln bi. Note that ai > 0.
The integral can be approximately evaluated in closed

form by means of the following theorem.

Theorem 1 Let hi(xi) = xλi−1
i e−aixi . Then

I =

∫

∆S

S
∏

i=1

hi(xi) dx

can be approximated as I ≈ e−a, where a =
∑S

i=1
aiλi

∑

S
i=1

λi
.

The proof, omitted due to space, explains that the approxi-
mation is essentially that of approximating a confluent hy-
pergeometric function by a truncated exponential.

Returning to the update equation (3),

f(xt+1|Yt) = C
1

∏S

i=1 xt+1,i

e−a ≈
∼ D(xt+1;λt+1|t),

whereC is a density-normalizing constant and the symbol ≈
∼

means “is approximately distributed as.” Thus f(xt+1|Yt)
is (approximately) Dirichlet distributed, with parameter vec-
tor λt+1|t =

1
∑

S
j=1

λt|t,j
Lλt|t. This establishes the follow-

ing theorem.

Theorem 2 Let f(xt|Yt) ∼ D(xt;λt|t) and f(xt+1|xt) ∼
D(xt+1, lt+1(xt)). where

lt+1(xt) =
[

lt+1(1) lt+1(2) · · · lt+1(S)
]

xt
△
= Lt+1xt.

Then the propagate step is f(xt+1|Yt)
≈
∼ D(xt+1;λt+1|t),

where ≈
∼means “is approximately distributed as,” and where

λt+1|t =
1

∑S

i=1 λt|t,i

Lt+1λt|t. (4)

As an example, consider the case that

λt|t =
[

3 2 4
]T

and L =





5 1 1
6 9 1
4 2 10



 .

The propagated λt+1|t, computed using (4) is

λt+1|t =
[

2.33 4.44 6.22
]T

.

Figure 1(a) shows the distribution D(x;λt|t), and Figure
1(b) shows the the distribution D(x;λt+1|t). As a result of
the update, the distribution has shifted toward states 2 and
3, as expected.

We present a couple of examples supporting the accu-
racy of the approximation made in the convolution above.
Figure 2(a) shows a function h1(τ) = τλ1−1e−a1τ and a
function h2(τ) = τλ2−1e−a2τ , the numerical convolution

(a) D(x;λt|t),
λt|t = (3, 2, 4)

(b) D(x;λt+1|t)

Fig. 1. Example of propagation
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(b) λ1 = 0.7, λ2 =
0.8, a1 = 0.3, a2 =
0.2

Fig. 2. Comparison of exact and approximate convolutions

h1 ∗h2 (cyan), the exact convolution and the approximation
of the theorem. In this plot, λ1 = 3.5, λ2 = 2.5, a1 = 0.3
and a2 = 0.2. Since the differences in the convolutions are
nearly imperceptible on the plot, the convolution plots are
offset from each other by by 0.05 so that they may be distin-
guished. To numerical precision, the KL distortion between
the analytical convolution and the 1-term approximation is
0 bits.

The Update Step The update step computes f(xt+1|Yt+1),
incorporating the measurement at time t+ 1 into the distri-
bution of the state xt+1. The update step can be written

f(xt+1|Yt+1) =
f(yt+1|xt+1,Yt)

f(yt+1|Yt)
f(xt+1|Yt).

By the assumed Markovian structure, f(yt+1|xt+1,Yt) =
f(yt+1|xt+1). Using this and the definition for the output
distribution (2),

f(xt+1|Yt+1) = N

S
∑

i=1

xt+1,ip(yt+1|i)f(xt+1|Yt), (5)

where the normalization constant is N =
∑

j
λt+1|t,j

∑

j
f(yt+1|i)λt+1|t,j

.

Rather than seeking an optimal approximation, we em-
ploy the expedience of a simple evaluation technique that at-
tempts to match the measured distribution at n ≥ S points.
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For the analysis below, it is convenient to use n = S points
drawn in from the vertices of the simplex. Let c denote the
center point of the domain simplex. That is, if 1 is the vector
of S ones, c = 1

S
1. Let ei be the unit vector with 1 in the ith

coordinate. Let the vertices be pulled in from the vertices ei
by a fraction η toward this center point to form n evaluation
points ǫi by ǫi = (1 − η)ei + ηc, i = 1, 2, . . . , S. The de-
sired approximate Dirichlet representation is found by eval-
uating (5) at points xt+1 = ǫi for i = 1, 2, . . . , n, and find-
ing a Dirichlet distribution which matches these evaluated
values at these points. Let g(x) = f(x|Yt+1). We desire
a Dirichlet distribution with parameter vector λ (which will
represent λt+1|t+1) such that

g(x)|
x=ǫi

=
Γ(

∑S

i=1 λi)
∏S

i=1 Γ(λi)

S
∏

i=1

xλi−1
i

∣

∣

∣

∣

∣

x=ǫi

,

i = 1, 2, . . . , S,

or

ln g(x)|
x=ǫi

=C +

S
∑

j=1

(λj − 1) lnxj

∣

∣

∣

∣

∣

∣

x=ǫi,i=1,2,...,S

(6)

whereC = C(λ) = ln Γ(
∑S

i=1 λi)−
∑S

i=1 ln Γ(λi). Stack-
ing (6) yields the equations













ln ǫ1,1 ln ǫ1,2 · · · ln ǫ1,S
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ln g(ǫ1) +
∑S

j=1 lnx1,j

ln g(ǫ2) +
∑S

j=1 lnx2,j

.

.

.
ln g(ǫS) +

∑S
j=1 lnxS,j















− C
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1

.

.

.
1













which can be written as Aλ = b − C1. Obviously, if C
were known, then the desired parameter λ could be read-
ily obtained. But, since C depends on λ, this is actually a
nonlinear equation. We propose an iterative solution. First,
define a function h(C) as follows.

function h = h(C)
λ = A†(b− C1)

h = lnΓ(
∑S

i=1 λi)−
∑S

i=1 ln Γ(λi)

Here, A† is the pseudoinverse of A, used if n > S points are
used in (6). With h(C) thus defined, an iterative algorithm
is proposed. Starting at some initial value of C = C [0],
iterates are formed as

C [k+1] = h(C [k]). (7)

The limit point, when it exists, is denoted as C∞.
There are generically two fixed points for h(C), as es-

tablished by the following lemma.

Lemma 1

1. h(C) is monotonically increasing over its range.
2. limC→∞ h′(C) < 1.

3. Let Cmin be the lower limit of the range of h(C). If
the elements of b are not all the same, then limC↓Cmin h

′(C) =
∞.

4. h(C) is a concave function.

The proof is omitted due to space considerations.
Based on the concavity of the function h(C) there are

two fixed points of h(C), one of which is an attractive fixed
point, and the other a repelling fixed point.

Let c1 denote the right (attractive) fixed point of h(C)
and c0 denote the left (repelling) fixed point, with c1 > c0,
and let λ1 and λ0 denote the corresponding λ parameter
values for these fixed points. Then it is straightforward to
show that λ0 = λ1 − (c1 − c0)|σA|1. That is, all of the
components ofλ0 are uniformly smaller than corresponding
components of λ1. Since λ1 has larger values than λ0, it
represents distributions that are more domelike.

For some distributions it may be necessary to solve for
the repelling fixed point. This can be done by solving the
fixed point directly, for example, numerically solving for a
point such that minimizes (h(C) − C)2 using any scalar
minimization technique, over a range that includes the left
fixed point but not the right fixed point. A convenient point
of separation is the point c− where the function h(C) has
unit slope.

4. SUMMARY AND CONCLUSIONS

This paper has presented an HMM providing a continuum
of states across a simplex. The number of pure states is a
finite number S, so the model is reminiscent of the classical
HMM, and in fact (under appropriate parameter settings)
subsumes it. The continuity of the states in the new model
allows for more nuanced modeling of systems.

Posterior distributions of the state were developed in a
Kalman filter-like setting. These distributions were forced
(by approximation) to assume the form of Dirichlet distri-
butions. For the examples given the Dirichlet distribution
provided an accurate representation of the true distribution.
Forcing this form of the distribution was obtained with two
approximations. In the first case, the integral over a sim-
plex occuring in the propagation step of a Kalman update is
shown to have a closed form representation when a hyper-
geometric function is approximated as an exponential. The
second approximation is obtained by forcing computed val-
ues to explicitly approximate a Dirichlet pdf. Finding the
parameters of the distribution can be done in nearly closed
form, or by means of an iterative scheme.

The results presented here are in many ways prelim-
inary to further analysis of the model. Quantification of
the accuracy of the Dirichlet representations imposed on the
model has to this point only been achieved numerically, so
more analysis of this question is necessary. Convergence of
the iterative parameter estimation algorithms remains to be
addressed. There remain, too, the broader questions of how
this new model will perform in applications.
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