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ABSTRACT

Finding low rank nonnegative decomposition of multivariate
data has many important applications in signal processing.
A standard method is the nonnegative matrix factorization
(NMF). In recent years, many algorithm have been proposed
for NMF. However, an important problem that has not re-
ceived as much attention is the selection of the rank of NMF.
In this paper we develop a method for selecting the rank of
NMF based on the Stein’s unbiased risk estimator (SURE).
In simulations we compare the method against crossvalida-
tion. In addition we apply the method for selecting the rank
of NMF for high dimensional hyperspectral data.

Index Terms— Nonnegative matrix factorization, SURE,
Hyperspectral data, Crossvalidation.

1. INTRODUCTION

Finding a low rank decomposition of multivariate data is of
much interest in the signal processing community [2]. Ex-
amples include principal component analysis (PCA) [3] and
independent component analysis (ICA) [4].

Often the components of low rank decomposition are only
meaningful if they are nonnegative. Examples include hyper-
spectral data unmixing [5] and dimension reduction for face
recognition [6] .

Nonnegative matrix factorization (NMF) is a popular
method for finding hidden components in nonnegative data.
A large number of algorithms have been developed to perform
NMF. One of the most commonly used algorithm is the mul-
tiplicative update algorithm [7]. For other NMF algorithms
and extensions thereof see [8].

An important problem for NMF is the rank selection. To
the best of our knowledge there is not much research on this
issue. In [9] a Bi-Crossvalidation (BCV) approach was devel-
oped. It is based on dividing the rows of the data matrix into
h groups and the columns into l groups. During one round
of BCV one row and column group (submatrix) is held out
while the rest of the data is used to construct an estimate of
it. The BCV estimate is based on repeating this for each row
and column group and averaging the resulting hold out error
estimates. An alternative crossvalidation approach, based on
using the weighted NMF, was proposed in [10]. The paper

[11] developed a method using automatic relevance determi-
nation for selecting the rank of NMF.

In this paper we consider rank selection for NMF using
the Stein’s unbiased risk estimator (SURE) [12, 1]. The idea
behind SURE is to develop an unbiased computable estimator
of the mean squared error (MSE) which can then be used to
select tuning parameters. SURE has proven to be useful for
variety of signal processing models but has never been used
for NMF before. The advantage of SURE relative to crossval-
idation methods is that SURE yields a closed form formula
that gives greater insight and computational speed. We com-
pare the method against BCV in simulation and apply it for
selecting the rank of NMF for real high dimensional hyper-
spectral data.

The paper is organized as follows. In section 2 we re-
view NMF. In section 3 we derive SURE for NMF. Section
4 presents simulations and an application of the proposed
method on real hyperspectral data is given. Finally, in section
5, conclusions are presented.

1.1. Notation

We denote matrices and vector with boldface letters and
scalars with lower case letters. The Frobenius norm is de-
noted as ‖W ‖2F =

∑

i

∑

j w
2
ij ; E[·] denotes the expecta-

tion operator. The vectorizing operation vec(A) stacks the
columns of A on top of each other; ⊗ is the Kronecker
product, and tr(A) is the trace of a matrix A.

2. NMF

There are two original NMF algorithms, one based on
Kullback-Leibler diverence and the other based on least
squares. In this paper we discuss the latter. The least squares
NMF criterion is given by

J(W ,H) = ‖Y −WH‖2F (1)

where Y = [yij ] is a nonnegativem× n matrix, W is a non-
negative m× r matrix, and H is a nonnegative r× n matrix.
Without loss of generality we assume during the derivation of
SURE that m ≥ n. The Lee-Seung method [7] for minimiz-
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ing (1) is a cyclic descent method

H1,ab = H0,ab
(W T

0 Y )ab

(W T
0 W 0H0)ab

W1,ia = W0,ia
(Y HT

1 )ia

(W 0H1H
T
1 )ia

where 0 refers to current iterate and 1 refers to next iterate.

3. SURE FOR NMF

Consider the model

yij = µij + ǫij , i = 1, ...,m, j = 1, ..., n

where ǫij ∼ N(0, σ2). The MSE for µ̂ij = µ̂ij,r(Y ), an
estimator of µij = [WH ]ij where r is the rank, is given by

Rr =
∑

ij

E[(µij − µ̂ij)
2]

=
∑

ij

e2ij − 2
∑

ij

E[eijǫij ] + nmσ2

where eij = yij − µ̂ij is the residual and

E[eijǫij ] = E[eij(yij − µ̂ij)]

= σ2E[
deij
dyij

] Stein’s Lemma [12]

= σ2 − σ2E[
dµ̂ij

dyij
].

This yields

Rr =
∑

ij

e2ij + 2σ2
∑

ij

E[
dµ̂ij

dyij
]− nmσ2.

By dropping expectation and irrelevant terms we get SURE

R̂r =
∑

ij

e2ij + 2σ2
∑

ij

dµ̂ij

dyij
.

The rank r is chosen corresponding to the minimum of SURE.

3.1. Derivation of dµ̂ij

dyij

To get the derivatives we need to differentiate through the
fixed point equations of the Lee-Seung method

(W TY )ab

(W T µ̂)ab
= 1

⇒ W T (Y − µ̂) = 0

and similarly (Y − µ̂)HT = 0. Now change notation to
K = HT so both W and K have r columns. The fixed
point equations are

W T (Y −WKT ) = 0 and (Y −WKT )K = 0.

We need to compute

dµ̂

dyij
=

dW

dyij
KT +W

dKT

dyij
.

Introduce E = Y − µ̂, let δi be a vector of 0s but with a
1 in position i, and differentiate through the fixed point equa-
tions to get

dW T

dyij
E +W T (δiδ

T
j −

dW

dyij
KT −W

dK

dyij

T

) = 0

E
dK

dyij
+ (δiδ

T
j −

dW

dyij
KT −W

dKT

dyij
)K = 0.

Rewriting gives

dW T

dyij
E −W T dW

dyij
KT −W TW

dKT

dyij
= −wiδ

T
j

E
dK

dyij
−

dW

dyij
KTK −W

dKT

dyij
K = −δik

T
j

where wT
i and kT

j are the i-th and j-th rows of W and
K, respectively. Now we vectorize and use the commu-
tator matrix Lrm [13] that has the following properties

Lrmvec
(

dWT

dyij

)

= vec
(

dW
dyij

)

and Lrnvec
(

dKT

dyij

)

=

vec
(

dK
dyij

)

where Lrm is an mr × mr permutation matrix;

similarly for Lrn. We thus obtain

M





vec
(

dW
dyij

)

vec
(

dKT

dyij

)



 = −

(

vec(wiδ
T
j )

vec(δik
T
j )

)

where

M =

[

(ET ⊗ Ir)Lmr 0nr×nr

0mr×mr [Ir ⊗E]Lrn

]

−

[

K ⊗W T In ⊗W TW

KTK ⊗ Im KT ⊗W

]

≡ B −A.

Now we can write a formula for
∑

ij

dµ̂ij

dyij
. We can write

∑

ij

dµ̂ij

dyij
=

∑

ij

δTi
dµ̂

dyij
δj

=
∑

ij

[(kT
j ⊗ δT

i ), (δ
T
j ⊗wT

i )]





vec
(

dW
dyij

)

vec
(

dKT

dyij

)





= −tr(A(B −A)−1)

= rank(M )− tr(B(B −A)−1)

= (m+ n)r − tr(B(B −A)−1).

It can be shown that (see the Appendix)

tr(B(B −A)−1) =
r

∑

i=1

n−r
∑

j=1

2λ2
j

λ2
j − ρ2i
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where ρ2i is the i-th eigenvalue of KTKW TW and λ2
j is the

j-th eigenvalue of ETE. Putting everything together we get
SURE for NMF

R̂r =
∑

ij

e2ij + 2σ2



(m+ n)r −

r
∑

i=1

n−r
∑

j=1

2λ2
j

λ2
j − ρ2i



 . (2)

4. EXPERIMENTS

In these experiments we focus on remote sensing hyperspec-
tral data. We assume that the hyperspectral data Y m×n fol-
lows the model

Y = WH + ǫ

where Y ,W and H are nonnegative matrices. Column p of
Y contains spectral measurement at pixel p. The model as-
sumes that the spectral measurement at pixel p is a linear com-
bination of so called endmember signatures contained in the
matrix W weighted by the abundances fractions contained in
column p of the matrix H . Ideally, there are few endmember
signatures that correspond to known physical features of the
remote sensing scene such as houses or trees.

4.1. Simulation

In the simulation Wm×r contains r = 4 endmember signa-
tures of dimensions m = 162. The endmembers are shown
in Fig. 1 The r × (m = 1000) matrix H = [h(p)] contains
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Fig. 1. The endmember signatures for the simulation.

the abundances fractions of each endmembers in its columns.
The abundances are generated according to the Dirichlet dis-
tribution [14]

f(h|α1, ..., αr) =
Γ(

∑

k αk)

ΠkΓ(αk)
Πkh

αk−1
k

where we set αk = 1. The noise matrix ǫ contains i.i.d el-
ements drawn from a Gaussian distribution with mean 0 and

variance σ2. The noise variance was set according to a spe-
cific signal to noise ratio (SNR)

SNR = 10 log10

(

‖WH‖2F
mnσ2

)

.

If an element of Y is negative after generation, we set it equal
to zero.

In the simulation we set SNR = 20 and compare NMF-
SURE to the Bi-Crossvalidation method in [9] which we call
BCV. To compute SURE (2) we need to estimate the noise
variance σ2. We use the following median noise estimator

σ̂ =
1

n

n
∑

p=1

median(|zi,p| : i = 1, ...,m)/0.6745

where zi,p, i = 1, ..., n is obtained by highpass filtering
yi,p, i = 1, ...,m. Similar noise estimator was used in [15].
We use (3× 3)-fold BCV.

We run 50 simulations. For each simulation we picked the
rank corresponding to the minimum of the SURE and BCV.
Fig. 2 summarizes the result. We see that SURE almost al-
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Fig. 2. A histogram summarizing the detection accuracy. r =
4 is the correct rank. Left: NMF-SURE. Right: BCV. Bottom:
A box plot.

ways picks the correct rank. Fig. 3 (left) shows NMF-SURE
vs the true MSE ‖Y − WH‖2F . The NMF-SURE follows
the MSE closely and minimum for both curves occur at the
same rank. The discrepancy between MSE and NMF-SURE
is mostly due to that a noise variance estimate is used instead
of the true noise variance in the SURE formula. We note that
the MSE is of course uncomputable in practice since it de-
pends on the true signal. Fig. 3 (right) shows BCV as a
function of rank. In this case the minimum of BCV occurs
at r = 6.
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Fig. 3. Left: MSE vs NMF-SURE for one of the simulation
runs. Right: BCV for one of the simulation runs.

4.2. Real data

In this section we apply NMF-SURE on the Indian Pine
hyperspectral data set. This data set was collected by the
AVIRIS sensor over the Indian Pines test site in northwestern
Indiana in June 1992. The data consists of 128×128 = 16384
pixels and 220 spectral bands. Noisy bands and water absorp-
tions bands were excluded leaving a 186× 16384 data matrix
Y . Fig. 4 shows the NMF-SURE result. The method is
picking r = 18 components. We note that the same data
was analyzed in [16] where various methods from the remote
sensing literature were used to identify the rank of the data.
These methods picked the rank in the range from 16-25 so
the SURE choice seems reasonable.
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Fig. 4. NMF-SURE for the real data.

5. CONCLUSIONS

In this paper we have developed SURE for selecting the rank
of NMF. We showed a simulation example where it outper-
formed a crossvalidation method specially designed for the
NMF problem. We also applied the method on a real hyper-
spectral data example.

6. APPENDIX

Here we continue with the SURE derivation. Let E =
PDQT be an SVD. Then we can write

B =

(

Q⊗ Ir 0nr×mr

0mr×nr Ir ⊗ P

)(

DT ⊗ Ir 0nr×nr

0mr×mr Ir ⊗D

)

·

(

P T ⊗ Ir 0mr×nr

0nr×mr Ir ⊗QT

)(

Lmr 0mr×nr

0nr×mr Lrn

)

≡ B1B2B3B4

we get

tr(B(B −A)−1) = tr(B2(B2 −BT
1 ABT

4 B
T
3 )

−1)

≡ tr(BC−1)

where

C =

(

C11 C12

C21 C22

)

and

C11 = DT ⊗ Ir −Lnr(W
TP ⊗QTK)

C12 = Lnr(W
TW ⊗ In)

C21 = −L(Im ⊗KTK)

C22 = Ir ⊗D −Lrm(P TW ⊗KTQ).

The inverse of C can be written as

C−1 =

(

C21 C22

C11 C12

)

−1 (
0rn×rm Irn×rn

Irm×rm 0rm×rn

)

=

(

F 11i F 12i

F 21i F 22i

)(

0rn×rm Irn×rn

Irm×rm 0rm×rn

)

=

(

F 12i ∗
∗ F 21i

)

where

F 12i = −C−1
21 C22J

−1

F 21i = −J−1C11C
−1
21

J = C12 −C11C
−1
21 C22

we do not use the ∗ terms. Now we continue with the deriva-
tive term in the SURE formula

∑

ij

dµ̂ij

dyij
= (m+ n)r − tr

[

(DT ⊗ Ir)F 12i

]

− tr [(Ir ⊗D)F 21i]

= (m+ n)r − 2tr
[

(DT ⊗ Ir)F 12i

]

.

If we let ρ2i be the i-th eigenvalue of KTKW TW and λ2
j be

the j-th eigenvalue of ETE then it can be shown that

tr
[

(DT ⊗ Ir)F 12i

]

=

r
∑

i=1

n−r
∑

j=1

λ2
j

λ2
j − ρ2i

.
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